Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium alkenes, arenes, alkynes

Among the latter group, iridium complexes (though less common than rhodium) and perhaps also ruthenium play crucial roles in many of the above-mentioned transformations of silicon compounds, leading to the creahon of sihcon-carbon bonds. Examples include the hydrosilylation or dehydrogenahve silylation of alkenes and alkynes, the hydroformylahon of vinylsilanes, and the silyhbrmylation of alkynes as well as activation of the sp C—H of arenes (by disilanes) and alkenes (by vinylsilanes). [Pg.364]

Abstract Stoichiometric cycloruthenation reactions of substrates containing Lewis-basic functionalities set the stage for efficient ruthenium-catalyzed C-H bond functionalization reactions. Thereby, selective addition reactions of C-H bonds across alkenes or alkynes enabled atom-economical synthesis of substituted arenes. More recently, ruthenium-catalyzed direct arylation reactions were examined, which display an unparalleled scope and, hence, represent economically and environmentally benign alternatives to traditional cross-coupling chemistry. [Pg.211]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

Abstract The selective catalytic activation/functionalization of sp C-H bonds is expected to improve synthesis methods by better step number and atom economy. This chapter describes the recent achievements of ruthenium(II) catalysed transformations of sp C-H bonds for cross-coupled C-C bond formation. First arylation and heteroarylation with aromatic halides of a variety of (hetero)arenes, that are directed at ortho position by heterocycle or imine groups, are presented. The role of carboxylate partners is shown for Ru(II) catalysts that are able to operate profitably in water and to selectively produce diarylated or monoarylated products. The alkylation of (hetero)arenes with primary and secondary alkylhalides, and by hydroarylation of alkene C=C bonds is presented. The recent access to functional alkenes via oxidative dehydrogenative functionalization of C-H bonds with alkenes first, and then with alkynes, is shown to be catalysed by a Ru(ll) species associated with a silver salt in the presence of an oxidant such as Cu(OAc)2. Finally the catalytic oxidative annulations with alkynes to rapidly form a variety of heterocycles are described by initial activation of C-H followed by that of N-H or O-H bonds and by formation of a second C-C bond on reaction with C=0, C=N, and sp C-H bonds. Most catalytic cycles leading from C-H to C-C bond are discussed. [Pg.119]


See other pages where Ruthenium alkenes, arenes, alkynes is mentioned: [Pg.198]    [Pg.250]    [Pg.198]    [Pg.250]    [Pg.75]    [Pg.198]    [Pg.42]    [Pg.184]    [Pg.494]    [Pg.681]    [Pg.265]    [Pg.282]    [Pg.356]    [Pg.211]    [Pg.537]    [Pg.689]   
See also in sourсe #XX -- [ Pg.80 , Pg.81 ]




SEARCH



Alkenes arenes

Ruthenium alkenes

Ruthenium arenes

© 2024 chempedia.info