Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ring desymmetrization

Among recently described new Pd-catalysed enantioselective reactions, the ring opening of meso oxabicyclic alkenes with dialkyl zinc reagents in the presence of chiral P/P and P/N ligands reported by Tautens el al. constitutes a synthetically outstanding C-C bond-forming desymmetrization reaction. [Pg.348]

The synthesis in Scheme 13.41 is also built on the desymmetrization concept but uses a very different intermediate. cA-5,7-Dimethylcycloheptadiene was acetoxylated with Pd(OAc)2 and the resulting all-cA-diacetate intermediate was enantioselectively hydrolyzed with a lipase to give a monoacetate that was protected as the TBDMS ether. An anti Sw2 displacement by dimethyl cuprate established the correct configuration of the C(2) methyl substituent. Oxidative ring cleavage and lactonization gave the final product. [Pg.1202]

The kinetic resolution by etherification has also been conducted through the cyclization of epoxy aliphatic alcohols.274 In these reactions catalyzed by monomeric complex 51, the ring closure of acyclic substrates occurred with exclusive / -selectivity (Equation (74)), whereas m -openings were observed in the desymmetrization of... [Pg.671]

Asymmetric ring opening of 3,4-epoxy cyclopentanone (desymmetrization) catalyzed by 2 mol% of an (R)-BINOL modified aluminum complex affords the (4/ )-hydroxy enone in 95% ee at 98% yield (Scheme 7-29).2... [Pg.417]

During the synthesis of H2[pz((V-Me2)8], (101) the seco-pz (158), a purple pigment, was isolated as a minor side product (40). The seco-pz was formed as a result of the desymmetrization of macrocycle 101 generated by the oxidation of one of the pyrrole rings during the work up, accompanied by the loss of the Mg(II) cation (Scheme 28). [Pg.556]

To avoid the inherent limitations of a kinetic resolution process, the reaction was extended to desymmetrization of prochiral meso epoxides. A number of cyclic di-methylidene epoxides were synthesized and subjected to treatment with Et2Zn in the presence of Cu(OTf)2 and ligands 42 or 43. As in the case mentioned above, ligand 42 was superior in terms of selectivity. Cydohexane derivative 46 gave the ring-opened product with a 97% ee and in a 90% isolated yield, with a y/a ratio of 98 2 (Scheme 8.28). The other substrates investigated produced sigmficantly lower ees of between 66% and 85%. [Pg.284]

A structural requirement for the asymmetric Birch reduction-alkylation is that a substituent must be present at C(2) of the benzoyl moiety to desymmetrize the developing cyclohexa-1,4-diene ring (Scheme 4). However, for certain synthetic applications, it would be desirable to utilize benzoic acid itself. The chemistry of chiral benzamide 12 (X = SiMes) was investigated to provide access to non-racemic 4,4-disubstituted cyclohex-2-en-l-ones 33 (Scheme 8). 9 Alkylation of the enolate obtained from the Birch reduction of 12 (X = SiMes) gave cyclohexa-1,4-dienes 32a-d with diastereoselectivities greater than 100 1 These dienes were efficiently converted in three steps to the chiral cyclohexenones 33a-d. [Pg.4]

Nugent, W. A. (1998) Desymmetrization of meso-epoxides with halides A new catalytic reaction based on mechanistic insight, J. Am. Chem. Soc., 120 7139-7140. Bruns, S. Haufe, G. (1999) Catalytic asymmetric ring opening of epoxides to chlorohydrins with mild chloride donors and enantiopure titanium complexes.. [Pg.338]

The 6,8-dioxabicyclo[3.2.1]octane skeleton has been a common structural subunit in natural products. A conceptually new strategy affording these structures is described by Burk et al. [Eqs. (6.67) and (6.68)]. For the syntheses of (+)-exo-brevicomin, they used desymmetrization of triene 97, derived from diol 96 with C2 symmetry, via ring-closing metathesis. Enantiomerically enriched (- -)-ent/o-brevicomm... [Pg.178]

In 2007, AntiUa and coworkers described the Brpnsted add-catalyzed desymmetrization of me yo-aziridines giving vicinal diamines [75]. hi recent years, chiral phosphoric acids have been widely recognized as powerful catalysts for the activation of imines. However, prior to this work, electrophiles other than imines or related substrates like enecarbamates or enamides have been omitted. In the presence of VAPOL-derived phosphoric acid catalyst (5)-16 (10 mol%) and azidotrimethylsilane as the nucleophile, aziridines 129 were converted into the corresponding ring-opened prodncts 130 in good yields and enantioselectivities (49-97%, 70-95% ee) (Scheme 53). [Pg.436]

In 2008, Toste and coworkers reported the desymmetrization of me o-episulfonium ions 131 generated in situ from ring closure of sulfides 132 featuring a P-trichloro-acetimidate leaving group [76], Chiral BINOL-derived phosphoric acid (5)-3o (15 mol%, R = triggered the formation of the intermediate mera-epi-... [Pg.437]

Me o-epoxides, nucleophilic ring-opening reactions by aryllithium/(—)-sparteine (11) have been realized by Alexakis and coworkers with very good differentiation between the enantiotopic positions . Eliminative desymmetrization reactions of me o-oxacycles such as 144 or 147, which are triggered by an enantiotopos-differentiating deprotonation... [Pg.1084]

From the NMR spectrum of copolymers produced from cyclohexene oxide and carbon dioxide it is difficult to assess low levels of asymmetric induction, i.e., low degrees of desymmetrization in the epoxide ring-opening step. In order to determine the extent of asymmetric induction it is necessary to hydrolyze the copolymer leading to the tra s-cyclohexane-l,2,-diol and examine the enantiomeric excess (4) [22]. Figure 4 shows the NMR spectrum in the carbonate region of atactic copolymer produced from cyclohexene oxide and CO2 using an achiral (salen)CrX catalyst. [Pg.8]

Lastly, Antilla has disclosed a novel asymmetric desymmetrization of a wide range of aliphatic, aromatic, and heterocyclic meso-aziridines with TMS-N3 promoted by 11 and related 12 (Scheme 5.31) [56]. Uniquely, this is one of only several reports of electrophilic activation of nonimine substrates by a chiral phosphoric acid. Mechanistic studies suggest that silylation of 11 or 12 by displacement of azide generates the active catalytic species A. Consequently, the aziridine is activated through coordination of it carbonyl with chiral silane A to produce intermediate B. Nucleophilic ring opening by azide furnishes the desymmetrized product and regenerates 11 or 12. [Pg.95]


See other pages where Ring desymmetrization is mentioned: [Pg.168]    [Pg.229]    [Pg.239]    [Pg.243]    [Pg.247]    [Pg.156]    [Pg.233]    [Pg.215]    [Pg.64]    [Pg.394]    [Pg.106]    [Pg.214]    [Pg.160]    [Pg.479]    [Pg.186]    [Pg.40]    [Pg.344]    [Pg.497]    [Pg.329]    [Pg.9]    [Pg.174]    [Pg.175]    [Pg.279]    [Pg.281]    [Pg.282]    [Pg.291]    [Pg.255]    [Pg.449]    [Pg.187]    [Pg.215]    [Pg.106]    [Pg.109]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Desymmetrization

© 2024 chempedia.info