Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rieske dioxygenases structure

Figure 13.21 Mononuclear non-haem iron enzymes from each of the five families in structures which are poised for attack by 02. (a) The extradiol-cleaving catechol dioxygenase, 2,3-dihydroxy-biphenyl 1,2-dioxygenase (b) the Rieske dioxygenase, naphthalene 1,2-dioxygenase (c) isopenicillin N-synthase (d) the ot-ketoglutarate dependent enzyme clavaminate synthase and (e) the pterin-dependent phenylalanine hydroxylase. (From Koehntop et al., 2005. With kind permission of Springer Science and Business Media.)... Figure 13.21 Mononuclear non-haem iron enzymes from each of the five families in structures which are poised for attack by 02. (a) The extradiol-cleaving catechol dioxygenase, 2,3-dihydroxy-biphenyl 1,2-dioxygenase (b) the Rieske dioxygenase, naphthalene 1,2-dioxygenase (c) isopenicillin N-synthase (d) the ot-ketoglutarate dependent enzyme clavaminate synthase and (e) the pterin-dependent phenylalanine hydroxylase. (From Koehntop et al., 2005. With kind permission of Springer Science and Business Media.)...
Fig. 2. Ribbon diagram of the structures of (a) the water-soluble Rieske fragment from bovine heart bci complex (ISF, left, PDB file IRIE), (b) the water-soluble Rieske fragment from spinach b f complex (RFS, middle, PDB file IRFS), and (c) the Rieske domain of naphthalene dioxygenase (NDO, right, PDB file INDO). The [2Fe-2S] cluster is shown in a space-filling representation, the ligands as ball-and-stick models, and residues Pro 175 (ISF)/Pro 142 (RFS)/Pro 118 (NDO) as well as the disulfide bridge in the ISF and RFS as wireframes. Fig. 2. Ribbon diagram of the structures of (a) the water-soluble Rieske fragment from bovine heart bci complex (ISF, left, PDB file IRIE), (b) the water-soluble Rieske fragment from spinach b f complex (RFS, middle, PDB file IRFS), and (c) the Rieske domain of naphthalene dioxygenase (NDO, right, PDB file INDO). The [2Fe-2S] cluster is shown in a space-filling representation, the ligands as ball-and-stick models, and residues Pro 175 (ISF)/Pro 142 (RFS)/Pro 118 (NDO) as well as the disulfide bridge in the ISF and RFS as wireframes.
X-ray absorption spectroscopy has been performed on the isolated Rieske protein from bovine heart mitochondrial bc complex 69) as well as on the Rieske-type cluster in Burkholderia cepacia phthalate dioxygenase (PDO) (72). The analysis performed by Powers et al. 69) was significantly hampered by the fact that the presence of two histidine ligands was not fully recognized therefore, only the results obtained with the dioxygenase where the mononuclear iron has been depleted will be considered here. Table VII gives a comparison of the distances obtained from the fit of the EXAFS spectra assuming an idealized Rieske model and of the distances in the crystal structures... [Pg.121]

The structure of phthalate dioxygenase reductase that transfers electrons directly from NADPH to phthalate dioxygenase has been determined by X-ray crystallography (119). In class II or class III dioxygenases, the ferredoxin obligately transfers electrons from the reductase to the terminal dioxygenase (64a) it can be either a Rieske-type ferredoxin or a ferredoxin containing a 4-cysteine coordinated [2Fe-2S] cluster. [Pg.150]

The class of mononuclear dioxygenases [30] can e.g. perform hydroperoxidation of lipids, the cleavage of catechol and dihydroxylation of aromatics. A prominent example is naphthalene dioxygenase, which was the first identified by its crystal structure. It contains iron and a Rieske (2Fe-2S) cluster and is commonly referred to as a Rieske-type dioxygenase [33]. The iron in this case is flanked by two histidines and one aspartic acid residue. Among the mononuclear iron enzymes, the 2-His-l-carboxylate is a common motif, which flanks one-side of the iron in a triangle and plays an important role in dioxygen activation [34] (Fig. 4.17). [Pg.146]

A wide range of soluble redox enzymes contain one or more intrinsic [2Fe-2S]2+ +, [3Fe-4S]+ , or [4Fe S]2+ + clusters that function in electron transport chains to transfer electrons to or from nonheme Fe, Moco/Wco, corrinoid, flavin, thiamine pyrophosphate (TPP), Fe S cluster containing, or NiFe active sites. Many have been structurally and spectroscopically characterized and only a few of the most recent examples of each type are summarized here. Dioxygenases that function in the dihydroxylation of aromatics such as benzene, toluene, benzoate, naphthalene, and phthalate contain a Rieske-type [2Fe-2S] + + cluster that serves as the immediate electron donor to the monomeric nonheme Fe active site see Iron Proteins with Mononuclear Active Sites). The xanthine oxidase family of molybdoenzymes see Molybdenum MPT-containing Enzymes) contain two [2Fe-2S] + + clusters that mediate electron transfer between the Moco active site and the Other soluble molybdoen-... [Pg.2315]

R. Friemann, K. Lee, E.N. Brown, D.T. Gibson, H. Eklund, S. Elamaswamy, Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system, Acta Crys-tallogr. Sect. D-Biological. Crystallogr. 65 (2009) 24-33. [Pg.283]


See other pages where Rieske dioxygenases structure is mentioned: [Pg.438]    [Pg.402]    [Pg.233]    [Pg.30]    [Pg.100]    [Pg.2259]    [Pg.110]    [Pg.257]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.100]    [Pg.103]    [Pg.116]    [Pg.143]    [Pg.144]    [Pg.430]    [Pg.559]    [Pg.560]    [Pg.383]    [Pg.303]    [Pg.332]    [Pg.333]    [Pg.2258]    [Pg.364]    [Pg.23]    [Pg.81]    [Pg.267]    [Pg.103]   
See also in sourсe #XX -- [ Pg.452 ]




SEARCH



Dioxygenases

Rieske dioxygenases

© 2024 chempedia.info