Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ribonuclease unfolding

The ROA spectra of partially unfolded denatured hen lysozyme and bovine ribonuclease A, prepared by reducing all the disulfide bonds and keeping the sample at low pH, together with the ROA spectra of the corresponding native proteins, are displayed in Figure 5. As pointed out in Section II,B, the short time scale of the Raman scattering event means that the ROA spectrum of a disordered system is a superposition of snapshot ROA spectra from all the distinct conformations present at equilibrium. Because of the reduced ROA intensities and large... [Pg.91]

Fig. 12. Thermal denaturation for ribonuclease Tj as followed by VCD, from 20° to 65°C. The matrix descriptors determined for the native state and the unfolded high-temperature data are indicated. The values indicate a loss of the helix segment but maintenance of sheet segments. Also listed are the spectrally determined fractional contributions (FC) to the secondary structure. When combined with the segment analysis, this implies that the residual sheet segments must be very short. Reprinted with permission from Pancoska, P., et al. (1996). Biochemistry 35(40), 13094-13106, the American Chemical Society. Fig. 12. Thermal denaturation for ribonuclease Tj as followed by VCD, from 20° to 65°C. The matrix descriptors determined for the native state and the unfolded high-temperature data are indicated. The values indicate a loss of the helix segment but maintenance of sheet segments. Also listed are the spectrally determined fractional contributions (FC) to the secondary structure. When combined with the segment analysis, this implies that the residual sheet segments must be very short. Reprinted with permission from Pancoska, P., et al. (1996). Biochemistry 35(40), 13094-13106, the American Chemical Society.
Privalov et al (1989) studied the unfolded forms of several globular proteins [ribonuclease A, hen egg white lysozyme, apomyoglobin (apoMb), cytochrome c, and staphylococcal nuclease]. Unfolding was induced by 6 M Gdm-HCl at 10°C, heating to 80°C, or by low pH at 10°C with cross-links cleaved (reduction and carboxamidomethylation or removal of heme). The unfolded forms showed CD spectra (Fig. 27)... [Pg.225]

Qi et al. (1998) have demonstrated that ribonuclease A exhibits behavior like that of cytochrome c. The burst phase observed on dilution of Gdm HCl-denatured RNase A is mimicked exactly by reduced RNase A. The latter, when carboxamidomethylated to prevent oxidation, has a CD at 222 nm that is nearly independent of temperature and indicative of extensive unfolding at zero denaturant. [Pg.251]

Navon A, Ittah V, Laity JH, et al. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A. Biochemistry 2001 40 93-104. [Pg.282]

Stelea SD, Pancoska P, Benight AS, et al. Thermal unfolding of ribonuclease A in phosphate at neutral pH deviations from the two-state model. Protein Sci. 2001 10 970-978. [Pg.285]

A. Rehage and F. X. Schmid, Fast- and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence, Biochemistry 21, 1499-1505 (1982). [Pg.61]

F. X. Schmid, R. Grafl, A. Wrba, and J. J. Beintema, Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease, Proc. Natl. Acad Sci. U.S.A. 83, 872-876 (1986). [Pg.61]

An example of this effect is provided by ribonuclease A (RNase A). At pH 8 and 37°, the rate of deamidation of Asn67 was more than 30-fold lower in the native than in the unfolded protein [111]. Deamidation of the native RNase A was also ca. 30-fold slower than of an octapeptide whose sequence is similar to that of the deamidation site, although the reaction mechanisms were similar [108][123],... [Pg.324]

An explanation for these observances in the cases of ethanol and PEG may arise from hydrophobic interactions (i.e., methylene groups, methyl) with the unfolded state of the protein at elevated temperatures. This idea is supported by studies of the interaction of several alkylureas (methyl-, ACVdimethyl-, ethyl-, and butylureas) with the thermal unfolding of ribonuclease A, where it was shown... [Pg.346]

Ribonuclease A (RNase A) was selected as the target enzyme for solid-phase synthesis because its sequence was known (Scheme S), 22 25 and an X-ray structure had been deduced. 24 Importantly, it had been shown that this 124-residue protein could be reduced and unfolded and then reoxidized to re-form the four disulfide bonds with recovery of full enzymatic activity. 25 ... [Pg.13]

Chemists have long appreciated that a protein s primary amino acid sequence determines its three-dimensional structure. It has also been known for some time that proteins are able to carry out their diversified functions only when they have folded up into compact three-dimensional structures. The protein-folding problem first gained prominence in the 1950s and 1960s, when Christian Anfinsen demonstrated that ribonuclease could be denatured (unfolded) and renatured reversibly. [Pg.78]

Yamamoto, K., Mizutani, Y., and Kitagawa, T. (2000) Nanosecond temperature jump and time-resolved Raman study of thermal unfolding of ribonuclease A, Biophys. J. 79, 485-495. [Pg.226]

Susceptibility to oxidation of disulfides built into proteins is strongly dependent on their location in the protein molecule (G3). Since the disulfides have a crucial role in maintaining protein tertiary structure, oxidation of certain —S—S— bridges may expose further disulfides and cause unfolding of the protein molcule. The final disulfide oxidation is a sulfone residue, which is stable and does not tend to reverse to sulfide. Therefore oxidative breakage of disulfides is irreversible. The spatial location of disulfides inside protein molecules influences their susceptibility to oxidation. The ribonuclease molecule has four —S—S— bonds, and at least three correctly located disulfide bonds are necessary to retain the ribonuclease enzyme properties. The compact ribonuclease molecule is relatively resistant to HOC1 oxidation (D18). [Pg.197]


See other pages where Ribonuclease unfolding is mentioned: [Pg.33]    [Pg.33]    [Pg.201]    [Pg.25]    [Pg.301]    [Pg.276]    [Pg.16]    [Pg.94]    [Pg.108]    [Pg.166]    [Pg.248]    [Pg.274]    [Pg.277]    [Pg.279]    [Pg.40]    [Pg.368]    [Pg.152]    [Pg.167]    [Pg.147]    [Pg.148]    [Pg.371]    [Pg.282]    [Pg.82]    [Pg.346]    [Pg.224]    [Pg.215]    [Pg.65]    [Pg.34]    [Pg.327]    [Pg.257]    [Pg.133]    [Pg.409]    [Pg.392]    [Pg.26]    [Pg.283]    [Pg.155]   
See also in sourсe #XX -- [ Pg.82 , Pg.86 , Pg.86 ]

See also in sourсe #XX -- [ Pg.54 , Pg.55 ]




SEARCH



Ribonuclease, unfolding/refolding

Unfolded

Unfolders

Unfolding of ribonuclease

© 2024 chempedia.info