Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complexes substitutions

TMSA may also be used for the construction of six-membered rings. In an intermolecular Reppe-type [2+2+2] cyclotrimeriza-- TMS (37) tion catalyzed by cationic rhodium complexes substituted arenes (eq 41) are generated in a highly chemo- and regioselective fashion. ... [Pg.576]

Recently a novel chiral ferrocene-based amidinato ligand and its rhodium complexes have been described. The chiral N,N -bis(ferrocenyl)-substituted formamidine (N,N -bis[(S)-2- (lR)-l-(diphenylphosphino)ethyl ferrocen-l-yl]for-mamidine was prepared from commercially available (IR)-l-(dimethylamino) ethyl ferrocene by a multistep procedure in an overall yield of 29%. Deprotonation of the ligand with -butyllithium followed by addition of [RhCl2(COD)2] as illustrated in Scheme 167 yielded the corresponding (formamidinato)rhodium(l)... [Pg.294]

The rhodium complex of the (R,R)-counter-enantiomer of (S,S)-BisP achieved a high level of ee (97%) in the asymmetric hydrogenation of 3-methoxy-substituted substrate (S)-122 (Scheme 25), which constitutes a precursor to the acetylcholinesterase inhibitor SDZ-ENA-713 (123). [Pg.32]

Metal-Catalyzed. Cyclopropanation. Carbene addition reactions can be catalyzed by several transition metal complexes. Most of the synthetic work has been done using copper or rhodium complexes and we focus on these. The copper-catalyzed decomposition of diazo compounds is a useful reaction for formation of substituted cyclopropanes.188 The reaction has been carried out with several copper salts,189 and both Cu(I) and Cu(II) triflate are useful.190 Several Cu(II)salen complexes, such as the (V-f-butyl derivative, which is called Cu(TBS)2, have become popular catalysts.191... [Pg.921]

Some of the hydroarylation product is also observed substituted anilines afford the two products to varying degrees (Equation (15)). The closely related rhodium complexes [Rh(PCy3)2Cl]2, [Rh(dmpe)Cl]2 (where dmpe= l,2-bis(dimethylphosphino)ethane), and [Rh(C8H14)Cl]2 show essentially no catalytic activity.166 Application of [Rh(PEt3)2Cl]2 to the reaction of aniline with styrene gives a mixture of hydroamination and oxidative amination products, the latter predominating.167 Other related rhodium-catalyzed amination reactions (oxidative amination) have been reported.168 169... [Pg.291]

The interesting complex chemistry of rhodium has been rather neglected this is probably because most of the synthetic methods for obtaining complexes have been tedious. In general, substitutions of chlorine atoms bonded to rhodium by other ligands are slow, and products have usually been mixtures. The situation is now changing, since novel catalytic approaches to rhodium complexes have been developed.1 The catalysis in the present synthesis involves the rapid further reaction of the hydrido complex formed from l,2,6-trichIorotri(pyridine)rho-dium(III) in the presence of hypophosphite ion. [Pg.65]

The [Rh(CO)2Cl]2-induced ring fission of substituted cyclopropanes 8a-b affords the rhodium complexes 9a-b via carbonylation [8]. The regioselectivity of carbonyl group insertion depends on the substituent. Reduction with NaBH4 leads to the corresponding alcohol. (Scheme 4)... [Pg.109]

In contrast to the reaction of an i72-CS2-rhodium complex with dimethyl acetylenedicarboxylate which gives rise to a metallocycle,186 the iron complexes 103 are converted by activated acetylenes into air-sensitive carbene complexes 104. Decomposition of the latter in air provides an unusual synthetic route to substituted tetrathiofulvene derivatives (Scheme 121).187... [Pg.373]

The dithiophosphonic acid monoesters, RP(OR )(S)SH can be conveniently prepared by cleavage of dimeric, cyclic diphosphetane disulfides, [RP(S)S]2 with alcohols, silanols, or trialkylsilylalcohols180 and then can be converted into metal complexes M[SPR(OR )]2 without isolation.181 The substituted ferrocenyl anion, (N3C6H4CH20)(CpFeC5H4)PS2 has been prepared in two steps from P4Sio, ferrocene and hydroxymethylbenzotriazole (and its salt was used for the preparation of some nickel and rhodium complexes).182 Zwitter-ionic ferrocenylditiophosphonates,... [Pg.604]

Rhodium complexes catalyze hydrosilylation-cyclization of 1,6-allenynes in the presence of (MeO SiH.77 To avoid complex product distributions, the use of substrates possessing fully substituted alkyne and allene termini is imperative. As shown in the cyclization of 1,6-allenyne 62a, the regiochemistry of silane incorporation differs from that observed in the rhodium-catalyzed hydrosilylation-cyclization of 1,6-enynes (see Section 10.10.2.3.2). For allenyne substrates, allene silylation occurs in preference to alkyne silylation (Scheme 40). [Pg.516]

Cationic rhodium complexes of these ligands were prepared and applied in the enantioselective hydroboration-oxidation of a range of vinylarenes,106,107 carefully chosen to highlight the effect on reactivity and enantioselectivity of different aryl substituents and / -substitution. Like QUINAP 60 and PHENAP 65, the ( -ligand gave rise to the (A)-secondary alcohol. [Pg.854]

The two-substituted-Quinazolinap-derived rhodium complexes proved extremely efficient catalysts for the hydro-boration-oxidation of vinylarenes (Table 6). For styrene derivatives, in most cases quantitative conversions were obtained after just 2 h at the relevant temperature (entries 1-6). Higher enantioselectivities were afforded with a 4-methoxy substituent (up to 95% ee, entry 3) compared to the 4-chloro or unsubstituted styrene analogs (entries 5 and 1), a trend also observed in hydroboration with rhodium complexes of QUINAP 60. This highlights that both the electronic nature of the substrate combined with the inherent steric properties of the catalyst are important for high asymmetric induction. It is noteworthy that in most cases, optimum enantioselectivities were afforded by the... [Pg.854]

Aizenberg and Milstein [78] have found rhodium complex-catalyzed reactions between polyfluorobenzenes and hydrosilanes which resulted in the substitution of fluorine atoms by hydrogen and were both chemoselective and regioselective (Eq. (6) ... [Pg.524]

The first step consists of the substitution of one of the ligands (L) of 18 by dioxane (39) in an oxidative addition (a) (Scheme 20.16). / -Elimination of 40 releases 2,3-dihydro-dioxine (41) and the 16-electron dihydrogen rhodium complex (42) (b). Alkene 43 coordinates to the vacant site of 42 (c) to give complex 44. A hydride insertion then takes place (d), affording complex 45. After a reductive elimination (e) of the product 46, the coordination of a ligand reconstitutes the Wilkinson-type catalyst (18). [Pg.595]

Systems which fulfil these conditions are tris(2,2 -bipyridyl)rhodium complexes [63] and, more effectively, substituted or unsubstituted (2,2 -bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes [64], Electrochemical reduction of these complexes at potentials between — 680 mV and — 840 mV vs SCE leads to the formation of rhodium hydride complexes. Strong catalytic effects observed in cyclic voltammetry and preparative electrolyses are... [Pg.109]

Several approaches have been undertaken to construct redox active polymermodified electrodes containing such rhodium complexes as mediators. Beley [70] and Cosnier [71] used the electropolymerization of pyrrole-linked rhodium complexes for their fixation at the electrode surface. An effective system for the formation of 1,4-NADH from NAD+ applied a poly-Rh(terpy-py)2 + (terpy = terpyridine py = pyrrole) modified reticulated vitreous carbon electrode [70]. In the presence of liver alcohol dehydrogenase as production enzyme, cyclohexanone was transformed to cyclohexanol with a turnover number of 113 in 31 h. However, the current efficiency was rather small. The films which are obtained by electropolymerization of the pyrrole-linked rhodium complexes do not swell. Therefore, the reaction between the substrate, for example NAD+, and the reduced redox catalyst mostly takes place at the film/solution interface. To obtain a water-swellable film, which allows the easy penetration of the substrate into the film and thus renders the reaction layer larger, we used a different approach. Water-soluble copolymers of substituted vinylbipyridine rhodium complexes with N-vinylpyrrolidone, like 11 and 12, were synthesized chemically and then fixed to the surface of a graphite electrode by /-irradiation. The polymer films obtained swell very well in aqueous... [Pg.112]

The binding mode of a vinylallene and a rhodium(I) complex depends greatly on the substitution patterns, probably for steric reasons. The reaction of a vinylallene lacking substituents at the vinylic terminus with RhCl(PPh3)3 provides a a2-bonded (vinylallene)rhodium complex having an essentially planar structure. Several stoichiometric reactions of the complex have been examined (Scheme 16.41) [41]. [Pg.941]

An important application of an isomerisation is found in the Takasago process for the commercial production of (-)menthol from myreene. The catalyst used is a rhodium complex of BINAP, an asymmetric ligand based on the atropisomerism of substituted dinaphthyl (Figure 5.5). It was introduced by Noyori [1],... [Pg.103]


See other pages where Rhodium complexes substitutions is mentioned: [Pg.181]    [Pg.171]    [Pg.141]    [Pg.820]    [Pg.1089]    [Pg.35]    [Pg.279]    [Pg.29]    [Pg.328]    [Pg.149]    [Pg.146]    [Pg.159]    [Pg.174]    [Pg.246]    [Pg.348]    [Pg.388]    [Pg.125]    [Pg.514]    [Pg.634]    [Pg.696]    [Pg.844]    [Pg.848]    [Pg.21]    [Pg.405]    [Pg.418]    [Pg.638]    [Pg.782]    [Pg.906]    [Pg.161]    [Pg.76]    [Pg.120]   
See also in sourсe #XX -- [ Pg.947 , Pg.972 ]

See also in sourсe #XX -- [ Pg.4 , Pg.947 ]




SEARCH



Complexes substitution

Ligand substitution reactions rhodium complexes

Olefin complexes, substitution reactions rhodium

Rhodium , substitution

Rhodium complexes substitution reactions

© 2024 chempedia.info