Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalytic compounds

The first step in the catalytic cycle is the dissociation of a phosphine ligand from Wilkinson s catalyst which produces a highly reactive trigonal planar rhodium centre, compound B. Oxidative addition of H2 to B affords C which then undergoes association of the C=C compound to afford D. One of the hydride ligands undergoes transfer to the C=C bond affording a coordinated alkyl as... [Pg.160]

The catalytic activity of rhodium diacetate compounds in the decomposition of diazo compounds was discovered by Teyssie in 1973 [12] for a reaction of ethyl diazoacetate with water, alcohols, and weak acids to give the carbene inserted alcohol, ether, or ester product. This was soon followed by cyclopropanation. Rhodium(II) acetates form stable dimeric complexes containing four bridging carboxylates and a rhodium-rhodium bond (Figure 17.8). [Pg.364]

This preparation is an illustration of the hydroformylation of olefins (oxo synthesis). The reaction occurs in the presence of soluble catalytic complexes containing metals of Group VIII of the periodic system. Although the metal originally used by Roelen and still largely used in the industry for the production of aliphatic aldehydes and alcohols is cobalt, the most active and selective catalysts are rhodium-containing compounds. The catalytic activity of the other Group VIII metals is in... [Pg.76]

Synthesis from Eugenol. The sodium or potassium salt of eugenol is isomerized to isoeugenol by heating. Isomerization can also be carried out catalytically in the presence of ruthenium [164] or rhodium [165] compounds. [Pg.129]

The selective production of methanol and of ethanol by carbon monoxide hydrogenation involving pyrolysed rhodium carbonyl clusters supported on basic or amphoteric oxides, respectively, has been discussed. The nature of the support clearly plays the major role in influencing the ratio of oxygenated products to hydrocarbon products, whereas the nuclearity and charge of the starting rhodium cluster compound are of minor importance. Ichikawa has now extended this work to a study of (CO 4- Hj) reactions in the presence of alkenes and to reactions over catalysts derived from platinum and iridium clusters. Rhodium, bimetallic Rh-Co, and cobalt carbonyl clusters supported on zinc oxide and other basic oxides are active catalysts for the hydro-formylation of ethene and propene at one atm and 90-180°C. Various rhodium carbonyl cluster precursors have been used catalytic activities at about 160vary in the order Rh4(CO)i2 > Rh6(CO)ig > [Rh7(CO)i6] >... [Pg.89]

Rhodium(II) compounds have become the premier choice in catalytic transformation of a-diazo compounds to induce cyclopropanation, aliphatic carbon-hydrogen bond insertion, heteroatom hydrogen bond insertion, aromatic substitution, and ylide formation. [Pg.692]

The behavior of bimetalated rhodium(II) compounds with head-to-tail configuration (type Vila) in catalytic transformation of a-diazo compounds has been also studiedJ " Results have confirmed that by changing the carboxylate groups and the substituents on the metalated and non-metalated rings of the phosphine the activity and the regio and chemoselectivity of these compounds can be substantially modified. [Pg.693]

The carbonylation of methanol requires catalysis of both organic and organometallic reactions. The catalytic process consists of five steps, which are shown in Scheme 17.1 for the reactions catalyzed by rhodium-carbonyl compounds (1) the reaction of methanol... [Pg.746]

Rhodium(I) compounds promote the rearrangement of phenylcyclopro-panes to olefins (Chum and Roth, 1975). Vinylcyclopropanes undergo interesting rearrangement and epimerization reactions in the presence of catalytic amounts of [Rh(CO)2Cl]2 (Salomon et al., 1977). [Pg.156]

On catalytic hydrogenation over a rhodium catalyst the compound shown gave a mixture containing as 1 ten butyl 4 methylcyclohexane (88%) and trans 1 ten butyl 4 methylcyclo hexane (12%) With this stereochemical result in mind consider the reactions in (a) and (b)... [Pg.277]

Acetyl chlotide is reduced by vatious organometaUic compounds, eg, LiAlH (18). / fZ-Butyl alcohol lessens the activity of LiAlH to form lithium tti-/-butoxyalumium hydtide [17476-04-9] C22H2gA102Li, which can convert acetyl chlotide to acetaldehyde [75-07-0] (19). Triphenyl tin hydtide also reduces acetyl chlotide (20). Acetyl chlotide in the presence of Pt(II) or Rh(I) complexes, can cleave tetrahydrofuran [109-99-9] C HgO, to form chlorobutyl acetate [13398-04-4] in about 72% yield (21). Although catalytic hydrogenation of acetyl chlotide in the Rosenmund reaction is not very satisfactory, it is catalyticaHy possible to reduce acetic anhydride to ethylidene diacetate [542-10-9] in the presence of acetyl chlotide over palladium complexes (22). Rhodium trichloride, methyl iodide, and ttiphenylphosphine combine into a complex that is active in reducing acetyl chlotide (23). [Pg.81]

The most common oxidatiou states and corresponding electronic configurations of rhodium are +1 which is usually square planar although some five coordinate complexes are known, and +3 (t7 ) which is usually octahedral. Dimeric rhodium carboxylates are +2 (t/) complexes. Compounds iu oxidatiou states —1 to +6 (t5 ) exist. Significant iudustrial appHcatious iuclude rhodium-catalyzed carbouylatiou of methanol to acetic acid and acetic anhydride, and hydroformylation of propene to -butyraldehyde. Enantioselective catalytic reduction has also been demonstrated. [Pg.179]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

Earlier catalysts were based on cobalt, iron, and nickel. However, recent catalytic systems involve rhodium compounds promoted by methyl iodide and lithium iodide (48,49). Higher mol wt alkyl esters do not show any particular abiUty to undergo carbonylation to anhydrides. [Pg.390]

The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

The mechanism through which catalytic metal carbene reactions occur is outlined in Scheme 2. With dirhodium(II) catalysts the open axial coordination site on each rhodium serves as the Lewis acid center that undergoes electrophilic addition to the diazo compound. Lewis bases that can occupy the axial coor-... [Pg.204]

The use of dirhodium(II) catalysts for catalytic reactions with diazo compounds was initiated by Ph. Teyssie [14] in the 1970s and rapidly spread to other laboratories [1]. The first uses were with dirhodium(II) tetraacetate and the more soluble tetraoctanoate, Rh2(oct)4 [15]. Rhodium acetate, revealed to have the paddle wheel structure and exist with a Rh-Rh single bond [16], was conve-... [Pg.205]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

A novel chiral dissymmetric chelating Hgand, the non-stabiUzed phosphonium ylide of (R)-BINAP 44, allowed in presence of [Rh(cod)Cl]2 the synthesis of a new type of eight-membered metallacycle, the stable rhodium(I) complex 45, interesting for its potential catalytic properties (Scheme 19) [81]. In contrast to the reactions of stabihzed ylides with cyclooctadienyl palladium or platinum complexes (see Scheme 20), the cyclooctadiene is not attacked by the carbanionic center. Notice that the reactions of ester-stabilized phosphonium ylides of BINAP with rhodium(I) (and also with palladium(II)) complexes lead to the formation of the corresponding chelated compounds but this time with an equilibrium be-... [Pg.55]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]


See other pages where Rhodium catalytic compounds is mentioned: [Pg.13]    [Pg.56]    [Pg.369]    [Pg.204]    [Pg.323]    [Pg.383]    [Pg.321]    [Pg.382]    [Pg.678]    [Pg.357]    [Pg.207]    [Pg.405]    [Pg.167]    [Pg.164]    [Pg.176]    [Pg.129]    [Pg.185]    [Pg.213]    [Pg.284]    [Pg.619]    [Pg.940]    [Pg.1003]    [Pg.209]    [Pg.259]    [Pg.270]    [Pg.675]   


SEARCH



Rhodium catalytic compounds asymmetric reactions

Rhodium catalytic compounds cycloaddition

Rhodium catalytic compounds cycloadditions

Rhodium catalytic compounds heterocycles

Rhodium catalytic compounds ketone derivation

Rhodium catalytic compounds synthesis

Rhodium compounds

© 2024 chempedia.info