Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalysts Michael addition

Ditertiary phosphines such as (86), (92), and (98) (100) (Scheme 6) have found important uses as ligands for metal-catalyzed transformations, including e.g., palladium-catalyzed Grignard cross couplings,194,205 rhodium-catalyzed Michael additions,2 hydrocyanations,206 copolymerizations,20 and palladium-catalyzed animations.208 Rhodium complexes of (86) are catalysts for the carbonylation of methanol.188 More recently the ligand bite angle of ditertiary phosphines such as (100) has been shown to influence catalytic activity/selectivity in several important catalytic processes.209-213... [Pg.272]

Ito and Sawamura showed that the use of rhodium and palladium in the presence of the TRAP-type ligand generates an effective catalyst combination for the reaction of an allyl carbonate with a cyanopropionamide [128]. The palladium-TRAP complex is proposed to generate a cationic Jt-allyl species. In addition, a rhodium-TRAP species complexes the cyano group of the nucleophile and induces formation of the enolate. Reaction of the enolate with the Tt-complex in assembly I generates the observed product. Scheme 45. The notion that enoliza-tion is caused by complexation to the cyano group is based on previous results in the enantioselective rhodium-catalyzed Michael addition. [Pg.833]

Rhodium(i) complexes are excellent catalysts for the 1,4-addition of aryl- or 1-alkenylboron, -silicon, and -tin compounds to a,/3-unsaturated carbonyl compounds. In contrast, there are few reports on the palladium(n) complex-catalyzed 1,4-addition to enones126,126a for the easy formation of C-bound enolate, which will result in /3-hydride elimination product of Heck reaction. Previously, Cacchi et al. described the palladium(n)-catalyzed Michael addition of ArHgCl or SnAr4 to enones in acidic water.127 Recently, Miyaura and co-workers reported the 1,4-addition of arylboronic acids and boroxines to a,/3-unsaturated carbonyl compounds. A cationic palladium(n) complex [Pd(dppe)(PhCN)2](SbF6)2 was found to be an excellent catalyst for this reaction (dppe = l,2-bis(diphenyl-phosphine)ethane Scheme 42).128... [Pg.389]

Copper compounds are catalysts for the Michael addition reaction (249), olefin dimerizations (245, 248), the polymerization of propylene sulfide (142), and the preparation of straight-chain poly phenol ethers by oxidation of 2,6-dimethylphenol in the presence of ethyl- or phenyl-copper (209a). Pentafluorophenylcopper tetramer is an intriguing catalyst for the rearrangement of highly strained polycyclic molecules (116). The copper compound promotes the cleavage of different bonds in 1,2,2-tri-methylbicyclo[1.1.0]butane compared to ruthenium or rhodium complexes. Methylcopper also catalyzes the decomposition of tetramethyllead in alcohol solution (78, 81). [Pg.310]

This type of transition metal catalyzed the Michael addition of nitriles to methyl acrylate, and methyl vinyl ketone proceeds with good to high yields with the aid of RhH(CO)(PPh3)3 as the catalyst (Eq. 63) [133]. Interestingly, benzyl cyanide also shows a high reactivity with methyl vinyl ketone. In this study, the insertion of the low-valent rhodium species into the C-H bond adjacent to the cyano group has been proposed. [Pg.72]

A broad range of enantiomericaUy pure 4,5-dihydrobenzo[r [l,3]diox-epines 177 have been prepared via a four-component Mannich reaction and subsequent intramolecular oxo-Michael reaction (14CC2196). The reactions proceeded with both high enantio- and diasteroselectivity, utilizing a dual catalytic system of Rh2(OAc)4 and a chiral phosphoric acid 178. The rhodium catalyst forms the protic oxonium ylide 174 from a diazo compound 171 and this subsequently adds to imine 175, formed in situ. The resulting enantiomericaUy enriched intermediate 176 then undergoes an intramolecular and diastereoselective oxo-Michael addition to form the final product 177. [Pg.556]

Early work by Tomioka and coworkers [39] described a two-component Michael/ aldol process to cyclopentenes. Furthermore, rhodium-assisted Michael/aldol processes to cyclopentanes and cyclohexanes have also been reported [40]. Later, a Michael addition reaction in combination with an adehyde a-alkylation reaction was reported for the highly stereoselective formation of y-nitroaldehydes 50 [41]. In this publication, a series of aliphatic aldehydes 49 (at Rj) and ( )-5-iodo-l-nitropent-1-ene 48 were reacted in the presence of the organocatalyst 1 and benzoic acid in dimethyl sulfoxide (DMSO) to afford the resulting cyclopentene ring system 50 (Scheme 7.9). The diastereo- and enantioselective process follows the proposed mechanism beginning with enamine activation of the aldehyde to 51 by the catalyst 1 (blocking the re face), and Michael addition of 48 occurs at its more accessible si face. The full enamine-enamine mechanism, illustrated in Scheme 7.9, provided... [Pg.226]

Recently, pincer metal compounds, such as those with rhodium [36], palladium [37,38], and platinum [39], are used as catalysts for Michael addition reactions. For example, the addition of an a-cyanopropionate to acrolein under mild, neutral conditions in the presence of a bis(oxazolinyl)phenylstannane-derived rhodium complex 8.44 proceeds enantioselectively with a high yield and high TON, as shown in Eq. (8.9) [36]. [Pg.150]

A hydrophobic polymer-supported scandium(III) catalyst was also successfully used in the Michael reaction of unsaturated ketones with silyl enol ethers. Recently, an amphiphilic resin-supported rhodium/phosphine complex was used as catalyst in the 1,4-addition of various boronic acids to enones in water at 25°C. High yields were obtained and the catalyst was easily separated and subjected to a second and third round of reactions with no decrease in activity. ... [Pg.242]


See other pages where Rhodium catalysts Michael addition is mentioned: [Pg.73]    [Pg.326]    [Pg.207]    [Pg.227]    [Pg.156]    [Pg.227]    [Pg.562]    [Pg.133]    [Pg.878]    [Pg.217]    [Pg.307]    [Pg.311]    [Pg.537]    [Pg.53]    [Pg.99]    [Pg.346]    [Pg.152]    [Pg.132]    [Pg.248]    [Pg.340]    [Pg.402]    [Pg.72]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Catalyst additives

Rhodium catalysts additions

Rhodium catalysts catalyst

© 2024 chempedia.info