Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible addition fragmentation polymers

Phosphoranyl radicals can be involved [77] in RAFT processes [78] (reversible addition fragmentation transfer) used to control free radical polymerizations [79]. We have shown [77] that tetrathiophosphoric acid esters are able to afford controlled/living polymerizations when they are used as RAFT agents. This result can be explained by addition of polymer radicals to the P=S bond followed by the selective p-fragmentation of the ensuing phosphoranyl radicals to release the polymer chain and to regenerate the RAFT agent (Scheme 41). [Pg.66]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

To make further use of the azo-initiator, tethered diblock copolymers were prepared using reversible addition fragmentation transfer (RAFT) polymerization. Baum and co-workers [51] were able to make PS diblock copolymer brushes with either PMMA or poly(dimethylacrylamide) (PDMA) from a surface immobihzed azo-initiator in the presence of 2-phenylprop-2-yl dithiobenzoate as a chain transfer agent (Scheme 3). The properties of the diblock copolymer brushes produced can be seen in Table 1. The addition of a free initiator, 2,2 -azobisisobutyronitrile (AIBN), was required in order to obtain a controlled polymerization and resulted in the formation of free polymer chains in solution. [Pg.132]

Fijten MWM, Meier MAR, Hoogenboom R, Schubert US (2004) Automated parallel inves-tigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 42 5775-5783... [Pg.13]

Hawker et al. 2001 Hawker and Wooley 2005). Recent developments in living radical polymerization allow the preparation of structurally well-defined block copolymers with low polydispersity. These polymerization methods include atom transfer free radical polymerization (Coessens et al. 2001), nitroxide-mediated polymerization (Hawker et al. 2001), and reversible addition fragmentation chain transfer polymerization (Chiefari et al. 1998). In addition to their ease of use, these approaches are generally more tolerant of various functionalities than anionic polymerization. However, direct polymerization of functional monomers is still problematic because of changes in the polymerization parameters upon monomer modification. As an alternative, functionalities can be incorporated into well-defined polymer backbones after polymerization by coupling a side chain modifier with tethered reactive sites (Shenhar et al. 2004 Carroll et al. 2005 Malkoch et al. 2005). The modification step requires a clean (i.e., free from side products) and quantitative reaction so that each site has the desired chemical structures. Otherwise it affords poor reproducibility of performance between different batches. [Pg.139]

Titirici MM, Sellergren B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem Mater 2006 18 1773-1779. [Pg.428]

A polyhedron silsesquioxane ladder polymer containing polymerizable components was prepared in a three-step process to address this concern. The process initially entailed preparing the reversible addition-fragmentation transfer (RAFT) ladder iniferter, polysilsesquioxane dithiocarbamate. This intermediate was then polymerized with methyl methacrylate at ambient temperature by irradiating with ultraviolet (UV) light and poly(si Isesquioxane-g-methyl methacrylate) was obtained. [Pg.59]

Prepared by bulk polymerization, an MIP for the detection of dicrotophos based on the Eu3+ complex has recently been presented [58]. The authors used reversible addition fragmentation chain transfer (RAFT) polymerization followed by ring closing methathesis (RCM) to obtain the star MIP with arms made out of block copolymer. The star MIP containing Eu3+ exhibited strong fluorescence when excited at 338 nm with a very narrow emission peak (half width -10 nm) at 614 nm. This MIP was sensitive to dicrotophos in the range of 0-200 ppb, but showed saturation above this limit. Cross-reactivity of this MIP was evaluated with respect to structurally similar compounds dichlorvos, diazinon and dimethyl methylphosphonate. In these tests no optical response of the polymer was detected even at concentrations much higher than the initial concentration of dicrotophos (>1000 ppb). [Pg.196]

Polymer-linked MWCNT nanocomposites were prepared by reversible addition fragmentation chain transfer (RAFT). The RAFT reagent was successfully grafted on to the surface of MWCNTs and PS chains were grafted from MWCNTs via RAFT polymerization [192], By covalently linking acyl chloride functions of functionalized MWCNTs with living polystyryllithium, Huang et al. succeeded in the preparation of polystyrene-functionalized MWCNTs (Scheme 1.32) [193],... [Pg.31]

And not only for organic synthesis the reversible addition fragmentation to the thiocarbonylthio motif found in xanthates, dithiocarbamates, dithioesters, trithiocarbonates etc., discussed in Scheme 2 for the particular case of xanthates, is now being actively exploited for the synthesis of bloc polymers. For a recent review, see [75] for the original patents on MADIX and RAFT, see [76,77]. The principle of this approach is summarised in Scheme 38 for the synthesis of a diblock polymer 66. The RAFT and MADIX processes, as they are now called, are set to revolutionise the crafting of polymers with well-defined architectures. It is an extremely effective technique that can be applied to essentially all commercial monomers and is tolerant of many functional groups. Scientific papers and patents on the subject now number in the hundreds. [Pg.233]

Conversely it is possible to produce low-molar-mass oligomers or telomers by deliberately choosing an agent with a large value of Ca (e.g. methyl mercaptan, Ca 2x 10 in styrene), so that DP is reduced to 5 for a concentration of 0.001%. Further particular examples of chain transfer (e.g. to polymer to form branches) will be discussed later, together with the use of reversible-addition fragmentation transfer (RAFT) and other radical-mediated synthetic strategies. [Pg.68]

The bifunctional initiator approach using reversible addition fragmentation chain-transfer polymerization (RAFT) as the free-radical controlling mechanism was soon to follow and block copolymers of styrene and caprolactone ensued [58]. In this case, a trithiocarbonate species having a terminal primary hydroxyl group provided the dual initiation (Figure 13.3). The resultant polymer was terminated with a trithiocarbonate reduction of the trithiocarbonate to a thiol allows synthesis of a-hydroxyl-co-thiol polymers which are of particular interest in biopolymer applications. [Pg.331]

Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven to be a powerful tool for the synthesis of polymers with predetermined molecular weight and low polydispersity [11, 12], In recent years, synthesis of polymers with complex molecular architecture, e.g. block and star copolymers, via the RAFT process have been reported [13],... [Pg.56]

STENZEL-ROSENBAUM M., DAVIS T.P., CHEN V., FANE A.G., Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. J. Polym Sci, Part A Polym Chem. (2001), 39 (9), 1353-65. [Pg.60]

BARNER L., QUINN J.F., BARNER-KOWOLLIK C.H., VANA P., DAVIS T.P., Reversible addition-fragmentation chain transfer polymerization initiated with y-radiation at ambient temperature an overview. European Polymer Journal, (2003), 39, 449-459. [Pg.60]

The first step for the core-first stars is the synthesis of multifunctional initiators. Since it is difficult to prepare initiators that tolerate the conditions of ionic polymerization, mostly the initiators are designed for controlled radical polymerization. Calixarenes [39, 58-61], sugars (glucose, saccharose, or cyclodextrins) [62-68], and silsesquioxane NPs [28, 69] have been employed as cores for various star polymers. For the growth of the arms, mostly controlled radical polymerizations were used. There are only very rare cases of stars made from nitroxide-mediated radical polymerization (NMRP) [70] or reversible addition-fragmentation chain transfer (RAFT) techniques [71,72], In the RAFT technique one has to differentiate between approaches where the chain transfer agent is attached by its R- or Z-function. ATRP is the most frequently used technique to build various star polymers [27, 28],... [Pg.6]


See other pages where Reversible addition fragmentation polymers is mentioned: [Pg.93]    [Pg.175]    [Pg.40]    [Pg.664]    [Pg.63]    [Pg.7]    [Pg.110]    [Pg.87]    [Pg.11]    [Pg.50]    [Pg.127]    [Pg.14]    [Pg.495]    [Pg.336]    [Pg.77]    [Pg.102]    [Pg.228]    [Pg.157]    [Pg.162]    [Pg.216]    [Pg.50]    [Pg.79]    [Pg.21]    [Pg.552]    [Pg.22]    [Pg.123]    [Pg.27]    [Pg.137]    [Pg.364]    [Pg.310]    [Pg.401]    [Pg.416]    [Pg.4]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 , Pg.36 ]




SEARCH



Addition polymers polymer

Addition reverse

Addition reversible

Addition-fragmentation

Fragmentation additivity

Polymer additives

Polymer reversibility

Polymers, addition

Reverse additives

Reversible addition-fragment

Reversible addition-fragmentation

© 2024 chempedia.info