Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Retinyl ester 8-carotene

Weakly adsorbed Anhydroretinol retinyl esters /3-carotene phylloquinone... [Pg.344]

VAN DEN BERG H and VAN VLIET T (1998) Effects of simultaneous, single oral doses of 3-carotene, with lutein or lycopene on the (3-carotene and retinyl ester responses in the triacylglycerol-rich lipoprotein fractions in men. Am J Clin Nutr 68(1) 82-89. [Pg.126]

VAN VLIET T, SCHREURS w H and VAN DEN BERG H (1995) Intestinal beta-carotene absorption and cleavage in men response to beta-carotene and retinyl esters in the triglyceride-rich lipoprotein fi action after a single oral dose of beta-carotene. Am J Clin Nutr 62(1) 110-16. [Pg.126]

In the body retinol can also be made from the vitamin precursor carotene. Vegetables like carrots, broccoli, spinach and sweet potatoes are rich sources of carotene. Conversion to retinol can take place in the intestine after which retinyl esters are formed by esterifying retinol to long chain fats. These are then absorbed into chylomicrons. Some of the absorbed vitamin A is transported by chylomicrons to extra-hepatic tissues but most goes to the liver where the vitamin is stored as retinyl palmitate in stellate cells. Vitamin A is released from the liver coupled to the retinol-binding protein in plasma. [Pg.475]

Vitamin A absorption from the small intestine requires dietary fat and pancreatic lipase to break down retinyl esters and bile salts to promote the uptake of retinol and carotene. Drugs, such as mineral oil, neomycin and cholestyramine, that can modify lipid absorption from the gastrointestinal tract can impair vitamin A absorption. The use of oral contraceptives can signihcantly increase plasma vitamin A levels. [Pg.782]

Retinol (vitamin A) is found in foods of mammalian origin in the form of retinyl ester, or in fruits and vegetables as carotenoids with provitamin A activity, especially P-carotene (provitamin A). In enterocytes, retinol binds to cellular retinol-binding protein type II (CRBPII), which directs the esterification by the enzyme lecithin retinol acyltransferase (LRAT). [Pg.69]

Retinyl esters and the P-carotene are incorporated into chylomicrons and taken up mainly by hepatocytes. In the liver retinol may be stored in stellate cells as retinyl esters, oxidized to retinoic acid or liberated into cells bound to retinol-binding proteins (RBP). All E retinoic acid and its 9Z isomer have an affinity for nuclear receptors. They activate the transcription and bind as dimers to specific nucleotide sequences, present in promoters of target genes. [Pg.70]

Vitamin A (retinol, 6.1) is the parent of a range of compounds known as retinoids, which possess the biological activity of vitamin A. In general, animal foods provide preformed vitamin A as retinyl esters (e.g. 6.5, which are easily hydrolysed in the gastrointestinal tract) while plant foods provide precursors of vitamin A, i.e. carotenoids. Only carotenoids with a /3-ionone ring (e.g. /1-carotene) can serve as vitamin A precursors. /3-Carotene (6.6)... [Pg.185]

Vitamin A activity is present in milk as retinol, retinyl esters and as carotenes. Whole cows milk contains an average of 52 fig retinol and 21 fig carotene per 100 g. The concentration of retinol in raw sheep s and pasteurized goats milks is 83 and 44 fig per 100 g, respectively, although milks of these species are reported (Holland et ai, 1991) to contain only trace amounts of carotenes. Human milk and colostrum contain an average of 58 and 155 fig retinol per lOOg, respectively. In addition to their role as provitamin A, the carotenoids in milk are reponsible for the colour of milk fat (Chapter 11). [Pg.187]

Figure 29-3. Chemical structures of important vitamin A species and the provitamin A carotenoid i-carotene. All-fra/w-fi-carolene (T) is the most important provitamin A carotenoid, which can be converted to all-fraws-retinal and then all-tram-retinol (If), which by definition is vitamin A. All-tram-retinol can be esterified with long-chain fatty acids to form retinyl ester (III), the storage form of vitaminA in the body.The active form of vitamin A in vision is 11-cts-retinal (TV).The transcriptionally active forms of vitaminA are all-tram-retinoic acid (V) and 9-cts-retinoic acid (VI). 13-cA-Retinoic acid (VII) has poor transcriptional regulatory activity but is used clinically as isotretinoin to treat skin diseases. Figure 29-3. Chemical structures of important vitamin A species and the provitamin A carotenoid i-carotene. All-fra/w-fi-carolene (T) is the most important provitamin A carotenoid, which can be converted to all-fraws-retinal and then all-tram-retinol (If), which by definition is vitamin A. All-tram-retinol can be esterified with long-chain fatty acids to form retinyl ester (III), the storage form of vitaminA in the body.The active form of vitamin A in vision is 11-cts-retinal (TV).The transcriptionally active forms of vitaminA are all-tram-retinoic acid (V) and 9-cts-retinoic acid (VI). 13-cA-Retinoic acid (VII) has poor transcriptional regulatory activity but is used clinically as isotretinoin to treat skin diseases.
RBP is relatively rich in aromatic amino acids, which create a deep hydrophobic pocket that is specific for the 8-ionone ring, polyene side chain, and polar end group. In addition to all- trans-retinol, RBP binds retinaldehyde, retinoic acid, and 13-c/s-retinol, but not retinyl esters or carotene. RBP shows considerable structural homology with 8-lactoglobulin from milk and other... [Pg.45]

The cleavage of P-carotene to form retinal, followed by the reduction of retinal to retinol, is shown in Figure 9.41. The retinol is converted to the retinyl ester, packaged in chylomicrons, and exported in the lymphatic system. [Pg.556]

Vitamin A is readily absorbed from the intestine as retinyl esters. Peak serum levels are reached 4 h after ingestion of a therapeutic dose. The vitamin is distributed to the general circulation via the lymph and thoracic ducts. Ninety percent of vitamin A is stored in the liver, from which it is mobilized as the free alcohol, retinol. Ninety-five percent is carried bound to plasma proteins, the retinol-binding protein. Vitamin A undergoes hepatic metabolism as a first-order process. Vitamin A is excreted via the feces and urine. Beta carotene is converted to retinol in the wall of the small intestine. Retinol can be converted into retinoic acid and excreted into the bile and feces. The elimination half-life is 9 h. [Pg.2838]

Dietary sources of vitamin A also provide the metabolites that are necessary for vision. The ingestion and processing of )3-carotene a retinyl esters to retinol and the transport of RBP-retinol complexes to target tissues was discussed earlier in this chapter, and the ret-... [Pg.332]

Fig. 1. The structures of key retinoids and their precursors. Fish convert retinyl esters (e.g. retinyl palmitate (RP)) and carotenoids (e.g. /3-carotene) to retinol in the gut lumen prior to intestinal absorption. Retinyl esters (e.g. RP) stored in the liver are synthesized from retinol by lecithin retinol acyltransferase (LRAT) and acyl CoAiretinol acyltransferase (ARAT). The retinyl esters are mobilized through their conversion to retinol by retinyl ester hydrolase (REH), which is then transported in the circulation to various sites in the body. Retinol is further metabolized within specific tissues to retinal by alcohol dehydrogenases (ADH) or short-chain dehydrogenase/reductase. Retinal is converted to the two major biologically active forms of retinoic acid (RA) (all-trans and 9-cis RA). Retinaldehyde dehydrogenase 2 (Raldh2) synthesizes all-trans RA from all-trans precursors and 9-cis RA form 9-cis precursors. Fig. 1. The structures of key retinoids and their precursors. Fish convert retinyl esters (e.g. retinyl palmitate (RP)) and carotenoids (e.g. /3-carotene) to retinol in the gut lumen prior to intestinal absorption. Retinyl esters (e.g. RP) stored in the liver are synthesized from retinol by lecithin retinol acyltransferase (LRAT) and acyl CoAiretinol acyltransferase (ARAT). The retinyl esters are mobilized through their conversion to retinol by retinyl ester hydrolase (REH), which is then transported in the circulation to various sites in the body. Retinol is further metabolized within specific tissues to retinal by alcohol dehydrogenases (ADH) or short-chain dehydrogenase/reductase. Retinal is converted to the two major biologically active forms of retinoic acid (RA) (all-trans and 9-cis RA). Retinaldehyde dehydrogenase 2 (Raldh2) synthesizes all-trans RA from all-trans precursors and 9-cis RA form 9-cis precursors.
Fig. 2. Tissue distribution and metabolism of retinoids in fish. Dietary carotenoids (e.g. /3-carotene (/3C)) and retinyl esters (e.g. retinyl palmitate (RP)) are converted into retinol (Rol) in the lumen of the gut. Retinol is then re-esterified and packaged into chylomicrons and transported to the portal circulation. When required elsewhere, stored retinyl esters (e.g. RP) in the liver are hydrolyzed to retinol and transported in the blood bound to the retinol-binding protein (RBP). Retinol is converted in target tissues to RA, RP or retinal (Ral). RA may exert its effects locally, or be returned to the circulation and transported throughout the body bound to albumin. RA can then be sequestered in other tissues. Fig. 2. Tissue distribution and metabolism of retinoids in fish. Dietary carotenoids (e.g. /3-carotene (/3C)) and retinyl esters (e.g. retinyl palmitate (RP)) are converted into retinol (Rol) in the lumen of the gut. Retinol is then re-esterified and packaged into chylomicrons and transported to the portal circulation. When required elsewhere, stored retinyl esters (e.g. RP) in the liver are hydrolyzed to retinol and transported in the blood bound to the retinol-binding protein (RBP). Retinol is converted in target tissues to RA, RP or retinal (Ral). RA may exert its effects locally, or be returned to the circulation and transported throughout the body bound to albumin. RA can then be sequestered in other tissues.

See other pages where Retinyl ester 8-carotene is mentioned: [Pg.66]    [Pg.603]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.316]    [Pg.373]    [Pg.386]    [Pg.221]    [Pg.699]    [Pg.187]    [Pg.1241]    [Pg.231]    [Pg.317]    [Pg.42]    [Pg.42]    [Pg.42]    [Pg.42]    [Pg.554]    [Pg.556]    [Pg.554]    [Pg.556]    [Pg.42]    [Pg.42]    [Pg.171]    [Pg.1079]    [Pg.416]   
See also in sourсe #XX -- [ Pg.32 , Pg.40 , Pg.59 , Pg.66 , Pg.69 ]




SEARCH



Retinyl

Retinyl esters

© 2024 chempedia.info