Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonant energy transfer

Juzeliunas G and Andrews D L 2000 Quantum electrodynamics of resonance energy transfer Adv. Chem. Rhys. 112 357-410... [Pg.1084]

Deniz A A, Dahan M, Grunwell J R, Ha T, Faulhaber A E, Chemla D S, Weiss S and Schultz P G 1999 Single-pair fluorescence resonance energy transfer on freely diffusing molecules observation of Forster distance dependence and subpopulations Proc. Natl Acad. Sc/. USA 96 3670-5... [Pg.2511]

With tlie development of femtosecond laser teclmology it has become possible to observe in resonance energy transfer some apparent manifestations of tire coupling between nuclear and electronic motions. For example in photosyntlietic preparations such as light-harvesting antennae and reaction centres [32, 46, 47 and 49] such observations are believed to result eitlier from oscillations between tire coupled excitonic levels of dimers (generally multimers), or tire nuclear motions of tire cliromophores. This is a subject tliat is still very much open to debate, and for extensive discussion we refer tire reader for example to [46, 47, 50, 51 and 55]. A simplified view of tire subject can nonetlieless be obtained from tire following semiclassical picture. [Pg.3027]

Juzeliunas G and Andrews D L 1999 Unified theory of radiative and radiationless energy transfer Resonance Energy Transfer ed D L Andrews and A A Demidov (New York Wiley) pp 65-107... [Pg.3030]

Mass resonant analyzer. A mass analyzer for mass-dependent resonant-energy transfer and measurement of the resonance frequency, power, or ion current of the resonant ions. [Pg.429]

C. Resonance energy transfer. The excitation energy can be transferred by resonance energy transfer, a radiationless process, to a neighboring molecule if their energy level difference corresponds to the quantum of excitation energy. In this process, the quantum, or so-called exciton, is transferred. [Pg.714]

F statistic, 239, 241 False negatives, 152—153 False positives, 152—153 Fenoximone, 188 First-order kinetics, 167 Fluorescence resonance energy transfer, 182... [Pg.295]

Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm). Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm).
Heim, R., and Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6 178-182. [Pg.402]

Rothschild W. G. Vibrational resonance energy transfer and dephasing in liquid nitrogen near its boiling point molecular computations, J. Chem. Phys. 65, 2958-61 (1976). [Pg.287]

More recently, the method of scanning near-field optical microscopy (SNOM) has been applied to LB films of phospholipids and has revealed submicron-domain structures [55-59]. The method involves scanning a fiber-optic tip over a surface in much the same way an AFM tip is scanned over a surface. In principle, other optical experiments could be combined with the SNOM, snch as resonance energy transfer, time-resolved flnorescence, and surface plasmon resonance. It is likely that spectroscopic investigation of snbmicron domains in LB films nsing these principles will be pnrsned extensively. [Pg.67]

Isik N, Hereld D, Jin T (2008) Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors. PLoS ONE... [Pg.244]

Percherancier Y, Berchiche YA, Slight 1, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M, Heveker N (2005) Bioluminescence resonance energy transfer reveals hgand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280 9895-9903... [Pg.247]

Toth PT, Ren D, Miller RJ (2004) Regulation of CXCR4 receptor dimerization by the chemokine SDF-lalpha and the HIV-1 coat protein gpl20 a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther 310 8-17 Tran PB, Miller RJ (2005) HIV-1, chemokines and neurogenesis. Neurotox Res 8 149-158 Tran PB, Ren D, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76 20-34... [Pg.249]

The intramolecular distances measured at room temperature with the AEDANS FITC pair were similar in the Ca2Ei and E2V states [297]. Ca and lanthanides are expected to stabilize the Ej conformation of the Ca -ATPase, since they induce a similar crystal form of Ca -ATPase [119,157] and have similar effects on the tryptophan fluorescence [151] and on the trypsin sensitivity of Ca -ATPase [119,120]. It is also likely that the vanadate-stabilized E2V state is similar to the p2 P state stabilized by Pi [418]. Therefore the absence of significant difference in the resonance energy transfer distances between the two states implies that the structural differences between the two conformations at sites recorded by currently available probes, fall within the considerable error of resonance energy transfer measurements. Even if these distances would vary by as much as 5 A the difference between the two conformations could not be established reliably. [Pg.103]

Ag Antigen FRET Forster resonance energy transfer... [Pg.11]

We have been developing methods to prepare and characterize supported attune catalysts nsing readily available commercial snpports. One potential means of depositing amines on oxide surfaces is shown in Scheme 38.1, in which the micelle s role is to space the amines on the snrface. Cnrrent work is directed towards characterizing these samples, particularly applying flnorescence resonance energy transfer (FRET) techniques. [Pg.339]

When the proteins are in close proximity the Europium-cryptate emission can be absorbed by the acceptor (such as allophycocyanin [APC], or XL) which emits at a higher wavelength. When the two proteins are far apart, no fluorescence resonance energy transfer (FRET) occurs. [Pg.39]


See other pages where Resonant energy transfer is mentioned: [Pg.2659]    [Pg.3007]    [Pg.3030]    [Pg.3032]    [Pg.3032]    [Pg.6]    [Pg.266]    [Pg.716]    [Pg.716]    [Pg.182]    [Pg.294]    [Pg.44]    [Pg.45]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.8]    [Pg.259]    [Pg.67]    [Pg.302]    [Pg.666]    [Pg.672]    [Pg.830]    [Pg.830]    [Pg.71]    [Pg.74]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.419 ]




SEARCH



Energy resonant

Resonance energy

Resonance transfer

© 2024 chempedia.info