Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance processes transform

First, the solvent evaporates, leaving behind formula units of the formerly dissolved salt. Next, dissociation of the formula units of salt into atoms occurs—the metal ions atomize, or are transformed into atoms. Then, if the atoms are easily raised to excited states by the thermal energy of the flame, a resonance process occurs in which the atoms resonate back and forth between the ground state and the excited states. [Pg.248]

In this subsection we will combine the general ideas of the iterative perturbation algorithms by unitary transformations and the rotating wave transformation, to construct effective models. We first show that the preceding KAM iterative perturbation algorithms allow us to partition at a desired order operators in orthogonal Hilbert subspaces. Its relation with the standard adiabatic elimination is proved for the second order. We next apply this partitioning technique combined with RWT to construct effective dressed Hamiltonians from the Floquet Hamiltonian. This is illustrated in the next two Sections III.E and III.F for two-photon resonant processes in atoms and molecules. [Pg.179]

Up to date, several experimental techniques have been developed which are capable of detecting some of these particles under ordinary thermodynamic conditions. One can use these methods to keep track of transformations of the particles. For instance, it is relevant to mention here the method of electron paramagnetic resonance (EPR) with sensitivity of about 10 particles per cm [IJ. However, the above sensitivity is not sufficient to study physical and chemical processes developing in gaseous and liquid media (especially at the interface with solids). Moreover, this approach is not suitable if one is faced with detection of particles possessing the highest chemical activity, namely, free radicals and atoms. As for the detection of excited molecular or atom particles... [Pg.170]

Radiofrequency spectroscopy (NMR) was introduced in 1946 [158,159]. The development of the NMR method over the last 30 years has been characterised by evolution in magnet design and cryotechnology, the introduction of computer-based operating systems and pulsed Fourier transform methods, which permit the performance of new types of experiment that control production, acquisition and processing of the experimental data. New pulse sequences, double-resonance techniques and gradient spectroscopy allow different experiments and have opened up the area of multidimensional NMR and NMRI. [Pg.323]

Multiple mass analyzers exist that can perform tandem mass spectrometry. Some use a tandem-in-space configuration, such as the triple quadrupole mass analyzers illustrated (Fig.3.9). Others use a tandem-in-time configuration and include instruments such as ion-traps (ITMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or FTMS). A triple quadrupole mass spectrometer can only perform the tandem process once for an isolated precursor ion (e.g., MS/MS), but trapping or tandem-in-time instruments can perform repetitive tandem mass spectrometry (MS ), thus adding n 1 degrees of structural characterization and elucidation. When an ion-trap is combined with HPLC and photodiode array detection, the net result is a profiling tool that is a powerful tool for both metabolite profiling and metabolite identification. [Pg.47]

Hughey, C.A. Hendrickson, C.L. Rodgers, R.P. Marshall, A.G. Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001,15. 1186-1193. [Pg.110]

Studies of gas-phase S"n2 reactions at sp carbon have been made by Fourier transform ion cyclotron resonance mass spectrometry (FTlCRMS) and complemented by both semiempirical and ab initio MO calculations. The particular processes of interest involved intramolecular reactions in which neutral nucleophiles displace neutral leaving groups within cationic substrates, e.g. A-(2-piperidinoethyl)-2,4,6-triphenylpyridinium cation (59), in which the piperidino moiety is the nucleophile and 2,4,6-triphenylpyridine (60) is the leaving group. No evidence has been obtained for any intermolecular gas-phase 5) 2 reaction involving a pyridine moiety as a leaving group. The quantum mechanical treatments account for the intramolecular preference. [Pg.336]


See other pages where Resonance processes transform is mentioned: [Pg.178]    [Pg.256]    [Pg.222]    [Pg.187]    [Pg.63]    [Pg.539]    [Pg.524]    [Pg.46]    [Pg.297]    [Pg.524]    [Pg.449]    [Pg.33]    [Pg.53]    [Pg.240]    [Pg.665]    [Pg.141]    [Pg.323]    [Pg.190]    [Pg.152]    [Pg.258]    [Pg.225]    [Pg.116]    [Pg.43]    [Pg.111]    [Pg.1092]    [Pg.85]    [Pg.2]    [Pg.107]    [Pg.201]    [Pg.55]    [Pg.54]    [Pg.65]    [Pg.449]    [Pg.295]    [Pg.269]    [Pg.17]    [Pg.88]    [Pg.39]    [Pg.75]    [Pg.465]    [Pg.196]    [Pg.202]    [Pg.181]   
See also in sourсe #XX -- [ Pg.334 , Pg.335 ]




SEARCH



Resonance processes

Resonant process

Transformation processes

© 2024 chempedia.info