Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relief points

The preceding equation assumes the reaction is completely quenched immediately after the relief point is reached. This behavior is closely approximated if the reaction stops in the quench pool and the reactor empties quickly and thoroughly. If the reaction continues in the quench pool, the temperature Tr should be increased to the maximum adiabatic exotherm temperature. An equation is presented by CCPS (AIChE-CCPS, 1997) that includes the heat of reaction. In some cases, an experiment is necessary to confirm that the reaction indeed stops in the quench pool. [Pg.2299]

The simplest model of normal mechemism of layers formation from a unicomponent ffow on the substrate leads to the Poisson distribution of relief points over the heights. [Pg.112]

The cost of decommissioning may be considerable, and comes of course at the point when the project is no longer generating funds. Some source of funding will therefore be required, and this may be available from the profit of other projects, from a decommissioning fund set up during the field life or through tax relief rolled back over the late field production period. [Pg.365]

For most processes, the optimum operating point is determined by a constraint. The constraint might be a product specification (a product stream can contain no more than 2 percent ethane) violation of this constraint causes off-specification product. The constraint might be an equipment hmit (vessel pressure rating is 300 psig) violation of this constraint causes the equipment protection mechanism (pressure relief device) to activate. As the penalties are serious, violation of such constraints must be very infrequent. [Pg.730]

To avoid this situation, some regulators are designed with a built-in over-pressure relief mechanism. Over-pressure relief circuits usually are composed of a spring-opposed diaphragm and valve assembly that vents the downstream piping when the control pressure rises above the set point pressure. [Pg.795]

Pressure-relief-device requirements are defined in Subsec. A. Set point and maximum pressure during relief are defined according to the service, the cause of overpressure, and the number of relief devices. Safety, safety relief, relief valves, rupture disk, breaking pin, and rules on tolerances for the reheving point are given. [Pg.1024]

Location of Vacuum Relief Device (Carl Schiappa, Michigan Engineering, The Dow Chemical Company, Midland, Mich., personal communication, March 20, 1992.) If a vacuum relief device is used, locate the device at the highest point on the top of the tank. If the vacuum relief device is not installed in this location and the tank is overfilled with liquid, the relief device will be sealed in liquid and will be ineffec tive in protecting the tank. This is especially true for the part of the tank above the vacuum relief device if it is sealed in liquid, tne liquid level is lowered, and the tank goes into a partial vacuum. [Pg.2335]

The motion of disloeations under eonditions of shoek-wave eompression takes plaee at sueh high veloeities (approaehing the elastie sound speed) that many vaeaneies and interstitials are left behind. However, these point defeets ean anneal out at room temperature and are thus diflieult to study by shoek-reeovery teehniques. The presenee of point defeets has little effeet on the material eompressibility and other properties related to equation of state. While they also have little direet influenee on the relief of shear stresses, point defeets do influenee the mobility and multiplieation of disloeations. This, in turn, affeets most of what happens under shoek-wave loading eonditions. [Pg.246]

By introducing branch points into the polymer chains, for example by incorporating about 2% of 1,2,3,-trichloropropane into the polymerisation recipe, chain extension may proceed in more than two directions and this leads to the formation of networks by chemical cross-links. However, with these structures interchange reactions occur at elevated temperatures and these cause stress relief of stressed parts and in turn a high compression set. [Pg.553]

A vapor poeket on the exchanger s low-pressure side can create a cushion that may greatly diminish the pressure transient s intensity. A transient analysis may not be required if sufficient low-pressure side vapor exists (although tube rupture should still be considered as a viable relief scenario). However, if the low-pressure fluid is liquid from a separator that has a small amount of vapor from flashing across a level control valve, the vapor pocket may collapse after the pressure has exceeded the fluid s bubble point. The bubble point will be at the separator pressure. Transient analysis will prediet a gradually inereasing pressure until the pressure reaches the bubble point. Then, the pressure will increase rapidly. For this ease, a transient analysis should be considered. [Pg.49]

The soft-seated spring-loaded pilot valve is so constructed as to have a long built-in blowdown. For a flowing type pilot, at the point where the pilot supply line feeds the system pressure to the pilot relief valve, it passes through a variable orifice, which is also the main valve blowdown adjustment. When the pilot opens, the flow through the supply line causes an immediate pressure drop across the orifice. By adjusting the size of the orifice and thus the amount of pressure drop across it, one can obtain any desired system blowdown (5 to 7% is typical). [Pg.163]

Remote Depressuring - A pilot operated valve is sufficiently positive in action to be used as a depressuring device. By using a hand valve, a control valve or a solenoid valve to exhaust the piston chamber, one can open the pilot-operated valve and close it at pressures below its set point from any remote location, without affecting its operation as a pressure relief valve. [Pg.164]

Sizing methods for pilot-operated pressure relief valves are in accordance with the accepted formulas described above, utilizing the appropriate discharge coefficients and effective orifice areas as recommended by the valve manufacturer. The following points should be noted ... [Pg.194]

ICI [34] developed a method for sizing a relief system that aeeounts for vapor/liquid disengagement. They proposed that homogeneous two-phase venting oeeurs and inereases to the point of disengagement. Their derivations were based on the following assumptions ... [Pg.970]

A hand calculation method that can be used to take into account two-phase relief when the materials m the vessel are natural" surface active foamers. To account for disengagement, the vessel void fraction at disengagement should be evaluated (i.e.. the point at which the vent flow ceases to be two-phase and starts to be vapor only). ... [Pg.974]

The compressor can operate at any point on the performance curve. For the maximum value of suction pressure, the pressure rise across the machine at the surge control point must be less than the system pressure rating. If not, a relief valve should be installed,... [Pg.285]

The relief valve must be installed so that gases are routed to a sale location. In small facilities and remote locations this is accomplished with a simple tail pipe, which points the discharge vertically upvsard anlower flammable limit in approximately 120 pipe diameters. Liquids may fall back on the equipment. [Pg.360]

Conventional relief valves should only be used where the discharge is routed independently to atmosphere, or if installed in a header system, the back-pressure build-up when the device is relieving must be kept below 10% of the set pressure so the set point is not significantly affected. The set point increases directly with back-pressure. [Pg.362]

Balanced relief valves are spring-loaded valves that contain a bellows arrangement to keep back-pressure from affecting the set point. Figure 13-4 shows a cross section of a balanced relief valve, and Figure 13-5 is a schematic that shows how the valve operates. The bonnet is vented to atmosphere and a bellows is installed so that the back-pressure acts both downward and upward on the same area of the disc. Thus, the forces created by the back-pressure always cancel and do not affect the set point. [Pg.363]

Pilot-operated valves have the advantage of allowing operations n the set point v/ith no leakage, and the set position is not affected by ba pressure. However, they will not function if the pilot fails. If the sens line fills with hydrates or solids, the valve will open at 25% over pressure trapped above the disc (usually the normal operating pre the vessel). For this reason they should be used with care in dirty vice and liquid service. They are used extensively offshore where all platform relief valves are tied into a single header because up to 5 back-pressure will not affect the valve capacity. [Pg.366]

Back-pressure can affect either the set pressure or the capacity of a relief valve. The set pressure is the pressure at which the relief valve begins to open. Capacity is the maximum flow rate that the relief valve will relieve. The set pressure for a conventional relief valve increases directly with back-pressure. Conventional valves can be compensated for constant back-pressure by lowering the set pressure. For self-imposed back-pressure—back-pressure due to the valve itself relieving—-there is no way to compensate. In production facility design, the back-pressure is usually not constant. It is due to the relief valve or other relief valves relieving into the header. Conventional relief valves should be limited to 10% back-pressure due to the effect of back-pressure on the set point. [Pg.368]

The set points for pilot-operated and balanced-bellows relief valves are unaffected by back-pressure, so they are able to tolerate higher backpressure than conventional valves. For pilot-operated and balanced-bellows relief valves, the capacity is reduced as the back-pressure goes above a certain limit. [Pg.368]


See other pages where Relief points is mentioned: [Pg.32]    [Pg.79]    [Pg.903]    [Pg.224]    [Pg.32]    [Pg.79]    [Pg.903]    [Pg.224]    [Pg.445]    [Pg.98]    [Pg.2288]    [Pg.2291]    [Pg.2321]    [Pg.266]    [Pg.66]    [Pg.319]    [Pg.138]    [Pg.159]    [Pg.107]    [Pg.8]    [Pg.471]    [Pg.147]    [Pg.294]    [Pg.504]    [Pg.642]    [Pg.349]    [Pg.356]    [Pg.357]    [Pg.362]   
See also in sourсe #XX -- [ Pg.8 , Pg.20 ]




SEARCH



Stress relief points

© 2024 chempedia.info