Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation time normal mode

Because relaxing solute normal mode frequencies are often much higher than typical solvent translational-rotational frequencies, the following short time picture of solute VER emerges [22,24]. In zeroth order the relaxing mode executes conservative harmonic notion in a hypothetical solvent that is nonresponsive to this motion. The velocity autocorrelation function /(f) for this zeroth order motion is... [Pg.212]

FIGURE 24.7 Local segmental (upper panel) and normal mode (lower panel) relaxation times for 1,4-polyisoprene M = 11 kg/mol) [90], plotted versus specific volume. [Pg.667]

How can one hope to extract the contributions of the different normal modes from the relaxation behavior of the dynamic structure factor The capability of neutron scattering to directly observe molecular motions on their natural time and length scale enables the determination of the mode contributions to the relaxation of S(Q, t). Different relaxation modes influence the scattering function in different Q-ranges. Since the dynamic structure factor is not simply broken down into a sum or product of more contributions, the Q-dependence is not easy to represent. In order to make the effects more transparent, we consider the maximum possible contribution of a given mode p to the relaxation of the dynamic structure factor. This maximum contribution is reached when the correlator in Eq. (32) has fallen to zero. For simplicity, we retain all the other relaxation modes = 1 for s p. [Pg.25]

The wavelength of the torsion normal mode with relaxation time r = 1 ns is A >50 bp for a >3.8x10 12 dyn-cm [from Eq. (4.34)]. Thus, the shortest torsion normal modes resolved in the FPA have wavelengths extending over about five full turns of the helix. The rms angular displacement of a base pair around its helix axis is about 18° at t= 1 ns and increases without bound as t goes to infinity. [Pg.187]

When a chain has lost the memory of its initial state, rubbery flow sets in. The associated characteristic relaxation time is displayed in Fig. 1.3 in terms of the normal mode (polyisoprene displays an electric dipole moment in the direction of the chain) and thus dielectric spectroscopy is able to measure the relaxation of the end-to-end vector of a given chain. The rubbery flow passes over to liquid flow, which is characterized by the translational diffusion coefficient of the chain. Depending on the molecular weight, the characteristic length scales from the motion of a single bond to the overall chain diffusion may cover about three orders of magnitude, while the associated time scales easily may be stretched over ten or more orders. [Pg.5]

Fig. 4.7 Temperature dependence of the mean relaxation time (r) divided by the rheological shift factor for the dielectric normal mode (plus) the dielectric segmental mode (cross) and NSE at Qinax=l-44 A (empty circle) and Q=1.92 A (empty square) [7] (Reprinted with permission from [8]. Copyright 1992 Elsevier)... Fig. 4.7 Temperature dependence of the mean relaxation time (r) divided by the rheological shift factor for the dielectric normal mode (plus) the dielectric segmental mode (cross) and NSE at Qinax=l-44 A (empty circle) and Q=1.92 A (empty square) [7] (Reprinted with permission from [8]. Copyright 1992 Elsevier)...
Configurational relaxation in the absence of flow is governed by the normal modes and their corresponding relaxation times. The autocorrelation function for the end-to-end vector is a measure of the configurational memory ... [Pg.30]

In Eq. (4.13) NT is the total number of internal degrees of freedom per unit volume which relax by simple diffusion (NT — 3vN for dilute solutions), and t, is the relaxation time of the ith normal mode (/ = 1,2,3NT) for small disturbances. Equation (4.13), together with a stipulation that all relaxation times have the same temperature coefficient, provides, in fact, the molecular basis of time-temperature superposition in linear viscoelasticity. It also reduces to the expression for the equilibrium shear modulus in the kinetic theory of rubber elasticity when tj = oo for some of the modes. [Pg.32]

Furthermore, it may be seen that for all the normal modes of relaxation, including the most rapid, the freely jointed chain model and the Rouse model are identical if we set n = N + 1 that is, the relaxation time xp of the pth normal mode of a freely-jointed chain is the same as that of a Rouse marcromolecule composed of N + 1 subchains, each of mean square end-to-end length b2. Moreover, for the special choice a = 0, Eq. (10) is true for arbitrarily large departures from equilibrium. We thus seem to have confirmed analytically the discovery of Verdier24 that quite short chains executing a stochastic process described by Eqs. (1) and (3) on a simple cubic lattice display Rouse relaxation behavior. Of course, Verdier s Monte Carlo technique permits study of excluded volume effects, quite beyond the range of our present efforts. [Pg.311]

The effects of coupling of the DTO and RB units in not only one- but also three-dimensional arrays are discussed below and molecular weight trends illustrated. A fundamental connection between relaxation times and normal mode frequencies, shown to hold in all dimensions, allows the rapid derivation of the common viscoelastic and dielectric response functions from a knowledge of the appropriate lattice vibration spectra. It is found that the time and frequency dispersion behavior is much sharper when the oscillator elements are established in three-dimensional quasi-lattices as in the case of organic glasses. [Pg.104]

Cubic Array. In the first section we demonstrated that, in appropriate limits, the relaxation time associated with a particular normal mode is related to the characteristic frequency as the inverse square [Eq. (1.6)]. This basic relation is independent of dimensionality of the array and provides a connection between lattice vibrational spectra and the distribution of relaxation times function, as (6)... [Pg.121]

In this respect, another insufficiency of Lodge s treatment is more serious, viz. the lack of specification of the relaxation times, which occur in his equations. In this connection, it is hoped that the present paper can contribute to a proper valuation of the ideas of Bueche (13), Ferry (14), and Peticolas (13). These authors adapted the dilute solution theory of Rouse (16) by introducing effective parameters, viz. an effective friction factor or an effective friction coefficient. The advantage of such a treatment is evident The set of relaxation times, explicitly given for the normal modes of motion of separate molecules in dilute solution, is also used for concentrated systems after the application of some modification. Experimental evidence for the validity of this procedure can, in principle, be obtained by comparing dynamic measurements, as obtained on dilute and concentrated systems. In the present report, flow birefringence measurements are used for the same purpose. [Pg.172]

In order to show that this procedure leads to acceptable results, reference is briefly made to the normal coordinate transformation mentioned at the end of Section 2.2. By this transformation the set of coordinates of junction points is transformed into a set of normal coordinates. These coordinates describe the normal modes of motion of the model chain. It can be proved that the lowest modes, in which large parts of the chain move simultaneously, are virtually uninfluenced by the chosen length of the subchains. This statement remains valid even when the subchains are chosen so short that their end-to-end distances no longer display a Gaussian distribution in a stationary system [cf. a proof given in the appendix of a paper by Ham (75)]. As a consequence, the first (longest or terminal) relaxation time and some of the following relaxation times will be quite insensitive for the details of the chain... [Pg.208]

The processes observed in the depolarized Rayleigh spectrum correspond to internal modes of motion. Thus, they may have relaxation times which substantially exceed those obtained from the longitudinal or bulk relaxation alone. Nevertheless they are a part of the a relaxation process as it is normally observed in the creep compliance. All processes with the same shift factors make up the full a relaxation. In liquids with substantial depolarized Rayleigh scattering the slowly relaxing part of the W scattering is also dominated by the orientation fluctuations associated with the internal modes of motion. Each internal mode contributes some intensity, but it is believed that fairly short wavelength modes dominate the scattered intensity. [Pg.144]

Comparison of the dielectric and viscoelastic relaxation times, which, according to the above speculations, obey a simple relation rn = 3r, has attracted special attention of scholars (Watanabe et al. 1996 Ren et al. 2003). According to Watanabe et al. (1996), the ratio of the two longest relaxation times from alternative measurements is 2-3 for dilute solutions of polyisobu-tilene, while it is close to unity for undiluted (M 10Me) solutions. For undiluted polyisoprene and poly(d,/-lactic acid), it was found (Ren et al. 2003) that the relaxation time for the dielectric normal mode coincides approximately with the terminal viscoelastic relaxation time. This evidence is consistent with the above speculations and confirms that both dielectric and stress relaxation are closely related to motion of separate Kuhn s segments. However, there is a need in a more detailed theory experiment shows the existence of many relaxation times for both dielectric and viscoelastic relaxation, while the relaxation spectrum for the latter is much broader that for the former. [Pg.154]


See other pages where Relaxation time normal mode is mentioned: [Pg.90]    [Pg.669]    [Pg.122]    [Pg.160]    [Pg.25]    [Pg.218]    [Pg.157]    [Pg.163]    [Pg.166]    [Pg.181]    [Pg.194]    [Pg.28]    [Pg.351]    [Pg.78]    [Pg.120]    [Pg.157]    [Pg.97]    [Pg.99]    [Pg.373]    [Pg.351]    [Pg.188]    [Pg.31]    [Pg.88]    [Pg.281]    [Pg.189]    [Pg.145]    [Pg.105]    [Pg.106]    [Pg.127]    [Pg.211]    [Pg.226]    [Pg.88]    [Pg.226]    [Pg.148]   
See also in sourсe #XX -- [ Pg.667 , Pg.668 ]

See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Normal Relaxation

Relaxation mode

© 2024 chempedia.info