Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal mode

For many applications, it may be reasonable to assume that the system behaves classically, that is, the trajectories are real particle trajectories. It is then not necessary to use a quantum distribution, and the appropriate ensemble of classical thermodynamics can be taken. A typical approach is to use a rnicrocanonical ensemble to distribute energy into the internal modes of the system. The normal-mode sampling algorithm [142-144], for example, assigns a desired energy to each normal mode, as a harmonic amplitude... [Pg.271]

Summarizing, in the crystal there are 36 Raman active internal modes (symmetry species Ug, hig, 2g> and 26 infrared active internal modes (biw b2w hsu) as well as 12 Raman active and 7 infrared active external vibrations (librations and translations). Vibrations of the type are inactive because there appears no dipole moment along the normal coordinates in these vibrations of the crystal. [Pg.47]

The presence of isotopic impurities causes clear effects in the vibrational spectra. Almost all modes studied so far show frequency shifts on S/ S substitution [81, 107]. The average shift of the internal modes is ca. 0.6 cm , and of the external modes it is 0.1-0.3 cm (Tables 3, 4 and 5). Furthermore, the isotopomers which are statistically distributed in crystals of natural composition can act as additional scattering centers for the phonon propagation. Therefore, in such crystals the lifetime of the phonons is shortened in comparison with isotopically pure crystals and, as a conse-... [Pg.57]

The pressure dependence of wavenumbers has been investigated theoretically by LD methods on the basis of a Buckingham 6-exp potential. In the studies of Pawley and Mika [140] and Dows [111] the molecules were treated as rigid bodies in order to obtain the external modes as a function of pressure. Kurittu also studied the external and internal modes [141] using his deformable molecule model [116]. The force constants of the intramolecular potential (modified UBFF) were obtained by fitting to the experimental wavenumbers. The results of these studies are in qualitative agreement with the experimental findings. [Pg.64]

Internal Bend (Figures 4c and 5b). The internal modes are used to identify the adsorbed species, and a comparison with the isolated molecule values indicates to what extent the molecule is affected by the surface. [Pg.401]

In order to simplify the expression for G, one has to employ a sufficiently simple model for the vibrational modes of the system. In the present case, the solvent contribution to the rate constant is expressed by a single parameter E, the solvent reorganization energy. In addition, frequency changes between the initial and final states are neglected and it is assumed that only a single internal mode with frequency co and with the displacement Ar is contributing to G. Thus the expression for G reduces to [124] ... [Pg.95]

Under these conditions, Eq. (32) indicates the maximum extent to which a particular mode p can reduce S(Q,t) as a function of the momentum transfer Q. Figure 10 presents the Q-dependence of the mode contributions for PE of molecular weights Mw = 2000 and Mw = 4800 used in the experiments to be described later. Vertical lines mark the experimentally examined momentum transfers. Let us begin with the short chain. For the smaller Q the internal modes do not influence the dynamic structure factor. There, only the translational diffusion is observed. With increasing Q, the first mode begins to play a role. If Q is further increased, higher relaxation modes also begin to influence the... [Pg.25]

Obviously, in the case of PS these discrepancies are more and more reduced if the probed dimensions, characterized by 2ti/Q, are enlarged from microscopic to macroscopic scales. Using extremely high molecular masses the internal modes can also be studied by photon correlation spectroscopy [111,112], Corresponding measurements show that - at two orders of magnitude smaller Q-values than those tested with NSE - the line shape of the spectra is also well described by the dynamic structure factor of the Zimm model (see Table 1). The characteristic frequencies QZ(Q) also vary with Q3. Flowever, their absolute values are only 10-15% below the prediction. [Pg.81]

NSE measurements at zero average contrast conditions on a symmetric diblock copolymer of H-PS and D-PS dissolved in an appropriate mixture of proto-nated and deuterated benzene are reported [171,172]. The measurements were performed at different concentrations c > c. For comparison, the interdiffusion of a corresponding blend of H-PS and D-PS homopolymers dissolved in deuterated benzene was studied, too [171]. Owing to the relatively low molecular masses, only the regime Q1/2 < 1 was accessible, and the internal modes could not be probed. [Pg.122]

The interfacial zone is by definition the region between the crystallite basal surface and the beginning of isotropy. Due to the conformationally diffuse nature of this region, quantitative contents of the interphase are most often determined by indirect measures. For example, they have been computed as a balance from one of the sum of the fractional contents of pure crystalline and amorphous regions. The analysis of the internal modes region of the Raman spectrum of polyethylene, as detailed in the previous section of this chapter, was used to quantify the content of the interphase region (ab). [Pg.271]

Diphenyl-l,3,4-oxadiazole crystallization revealed two polymorphic forms (centrosymmetric and non-centrosymmetric) of the substance. Raman spectra of both phases recorded between 15 and 1700 cm-1 showed well-resolved internal modes and the external lattice vibrations below 200 cm-1, offering a fast tool for discrimination between different polymorphs. The internal modes were dominated by two groups, one around 1000 cm-1 and the second one between ca. 1500 and 1600 cm-1 <2003JST219>. [Pg.402]

Collisions which place energy into, or remove energy from, internal modes in one molecule without producing any chemical change are very important in some processes. The transfer of this energy into reactant A is represented by the bimolecular process... [Pg.134]

Show that, for the bimolecular reaction A + B - P, where A and B are hard spheres, kTsr is given by the same result as jfcSCT, equation 6.4-17. A and B contain no internal modes, and the transition state is the configuration in which A and B are touching (at distance dAR between centers). The partition functions for the reactants contain only translational modes (one factor in Qr for each reactant), while the transition state has one translation mode and two rotational modes. The moment of inertia (/ in Table 6.2) of the transition state (the two spheres touching) is where p, is reduced mass (equation 6.4-6). [Pg.153]

But these can equally well be identified as internal modes. More to the point, the generalization of eqs 4-8 to include all the molecular modes is obvious. Every Q+ set behaves in an... [Pg.289]

It is often useful to have an approximate relation for VPIE s, especially when complete vibrational analysis is impossible. The AB approximation serves that purpose, and sometimes gives more physical insight than do detailed, but very complicated calculations using Equation 5.24. It is based on the observation that ordinarily condensed phase vibrations fall in two groups the first containing the high frequencies, m > 1 (most often the internal modes, uj = hcvj/kT), where the zero point (low temperature) approximation is appropriate, and... [Pg.151]

The A defined in Equation 5.30 is not to be confused with the Helmholtz free energy. Should the A frequencies be limited to the external hindered translations and rotations, vi g = vi g = 0, and this is an additional simplification. In some molecules, however, there are isotope sensitive low lying internal modes (often internal rotations or skeletal bends). In that cases both terms in Equation 5.30 contribute. [Pg.152]

Anharmonicity Internal Modes, Effect of Zero Point Anharmonicity... [Pg.158]


See other pages where Internal mode is mentioned: [Pg.49]    [Pg.57]    [Pg.63]    [Pg.64]    [Pg.64]    [Pg.178]    [Pg.220]    [Pg.401]    [Pg.94]    [Pg.107]    [Pg.25]    [Pg.73]    [Pg.73]    [Pg.262]    [Pg.263]    [Pg.270]    [Pg.389]    [Pg.481]    [Pg.134]    [Pg.145]    [Pg.247]    [Pg.73]    [Pg.309]    [Pg.308]    [Pg.323]    [Pg.125]    [Pg.131]    [Pg.132]    [Pg.323]    [Pg.148]    [Pg.153]    [Pg.154]    [Pg.158]   
See also in sourсe #XX -- [ Pg.23 , Pg.26 , Pg.40 , Pg.42 ]

See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.317 ]

See also in sourсe #XX -- [ Pg.260 , Pg.261 , Pg.262 , Pg.266 , Pg.273 ]

See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.70 , Pg.155 , Pg.158 , Pg.167 ]

See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Adiabatic Internal Modes from Experimental Frequencies

Adiabatic internal modes

Dielectric relaxation internal modes from

Frequency internal mode

Internal Mode Amplitudes

Internal modes collective coordinates

Internal modes concentration dependence

Internal modes of vibration

Internal rotation modes

Internal standard mode

Length scale internal modes

Light scattering spectra internal modes

Metal centers, internal vibrational modes

Mode of Internalization

Near-dilute polymers and internal modes

Phonons, internal and external modes

Previous Attempts of Defining Internal Vibrational Modes

Rigid and Relaxed Internal Hardness Decoupling Modes

Separation internal/external modes

The Concept of Localized Internal Vibrational Modes

The internal modes

Unimolecular reactions internal energy modes

© 2024 chempedia.info