Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation methods interface

Adsorption-Desorption Kinetics at the Metal-Oxide-Solution Interface Studied by Relaxation Methods... [Pg.230]

Chemical relaxation methods can be used to determine mechanisms of reactions of ions at the mineral/water interface. In this paper, a review of chemical relaxation studies of adsorption/desorption kinetics of inorganic ions at the metal oxide/aqueous interface is presented. Plausible mechanisms based on the triple layer surface complexation model are discussed. Relaxation kinetic studies of the intercalation/ deintercalation of organic and inorganic ions in layered, cage-structured, and channel-structured minerals are also reviewed. In the intercalation studies, plausible mechanisms based on ion-exchange and adsorption/desorption reactions are presented steric and chemical properties of the solute and interlayered compounds are shown to influence the reaction rates. We also discuss the elementary reaction steps which are important in the stereoselective and reactive properties of interlayered compounds. [Pg.230]

The adsorption and desorption kinetics of surfactants, such as food emulsifiers, can be measured by the stress relaxation method [4]. In this, a "clean" interface, devoid of surfactants, is first formed by rapidly expanding a new drop to the desired size and, then, this size is maintained and the capillary pressure is monitored. Figure 2 shows experimental relaxation data for a dodecane/ aq. Brij 58 surfactant solution interface, at a concentration below the CMC. An initial rapid relaxation process is followed by a slower relaxation prior to achieving the equilibrium IFT. Initially, the IFT is high, - close to the IFT between the pure solvents. Then, the tension decreases because surfactants diffuse to the interface and adsorb, eventually reaching the equilibrium value. The data provide key information about the diffusion and adsorption kinetics of the surfactants, such as emulsifiers or proteins. [Pg.2]

Yasunaga, T., and Ikeda, T. (1986). Adsorption-desorption kinetics at the metal-oxide-solution interface studied by relaxation methods. ACS Symp. Ser. 323, 230-253. [Pg.98]

Ikeda, T., Sasaki, M., and Yasunaga, T. (1984b). Kinetic studies of ion exchange of NH7 in zeolite H-ZSM-5 by the chemical relaxation method. J. Colloid Interface Sci. 98, 192-195. [Pg.197]

See especially Chaps. 2 and 3 in D. L. Sparks and D. L. Suarez, op. cit.10 A summary review of chemical relaxation methods is given by T. Yasunaga and T. Ikeda, Adsorption-desorption kinetics at the metal-oxide-solution interface studied by relaxation methods, Chap. 12 in J. A. Davis and K. F. Hays, op. cit.2... [Pg.173]

Since the interface relaxation method was established it has been used to determine the coexistence conditions for over 20 polymer mixtures [74,75,88,91, 92,95-99]. [Pg.18]

Of all the transient relaxation methods, p-jump relaxation has been used Ihe most widely to study interactions at the solid/liquid interface. As will he described later, there are numerous applications of this technique to soil constituent/inorganic species interactions. [Pg.69]

Yasunaga, T., and T. Ikeda. 1986. Adsorption-desorption kinetics of the metal-oxide-solution interface studied by relaxation methods, p. 230-253. In J.A. Davis and K.F. Hayes (ed.) Geochemical processes at mineral surfaces. Proc. Am. Chem. Soc. Symp. Ser. 323, Chicago, IL. 8-13 Sept. 1985. ACS, Washington, DC. [Pg.94]

Yasunaga, T. and T. Ikeda (1986), Adsorption-Desorption Kinetics at the Metal-oxide-Solution Interface studied by Relaxation Methods, in J. A. Davies and K. F. Hayes, Eds., Geochemical Processes at Mineral Surfaces, American Chemical Society, Washington, DC, pp. 230-253. [Pg.336]

The aim of this chapter is to present the fundamentals of adsorption at liquid interfaces and a selection of techniques, for their experimental investigation. The chapter will summarise the theoretical models that describe the dynamics of adsorption of surfactants, surfactant mixtures, polymers and polymer/surfactant mixtures. Besides analytical solutions, which are in part very complex and difficult to apply, approximate and asymptotic solutions are given and their range of application is demonstrated. For methods like the dynamic drop volume method, the maximum bubble pressure method, and harmonic or transient relaxation methods, specific initial and boundary conditions have to be considered in the theories. The chapter will end with the description of the background of several experimental technique and the discussion of data obtained with different methods. [Pg.100]

The drop-shape oscillation technique as developed by Tian et al. (206, 207) is another technique suitable for closing the gap in the experimental methods for liquid/liquid interfaces. This method is based on the analysis of drop-shape oscillation modes and yields again the matter-ex-change mechanism and the dila-tional interfacial elasticity. The method is similar to the transient relaxation methods applicable only for comparatively low oscillation frequencies. [Pg.26]

Interfacial relaxation methods are typically based on a perturbation of the equilibrium state of an interface by small changes of the interfacial area. The ratio of the amplitudes of surface tension and relative area changes gives the modulus of elasticity , defined as... [Pg.103]

The techniques for characterizing the kinetics of electrode reactions can be classified into steady-state and transient methods. The steady-state methods involve the measurement of the current-potential relationships at constant current (galvanoslatic control) or constant potential (potentiostatic control) conditions and measuring the response, which is either the potential or the current after a steady state is achieved. The non-steady-state methods involve the perturbation of the system from an equilibrium or a steady-state condition, and follow the response of the system as a function of time using current, potential, charge, impedance, or any other accessible property of the interface. Relaxation methods are a subclass of perturbation methods. [Pg.128]

Most adsorbed surfactant and polymer coils at the oil-water (0/W) interface show non-Newtonian rheological behavior. The surface shear viscosity Pg depends on the applied shear rate, showing shear thinning at high shear rates. Some films also show Bingham plastic behavior with a measurable yield stress. Many adsorbed polymers and proteins show viscoelastic behavior and one can measure viscous and elastic components using sinusoidally oscillating surface dilation. For example the complex dilational modulus c obtained can be split into an in-phase (the elastic component e ) and an out-of-phase (the viscous component e") components. Creep and stress relaxation methods can be applied to study viscoelasticity. [Pg.376]

It was determined, for example, that the surface tension of water relaxes to its equilibrium value with a relaxation time of 0.6 msec [104]. The oscillating jet method has been useful in studying the surface tension of surfactant solutions. Figure 11-21 illustrates the usual observation that at small times the jet appears to have the surface tension of pure water. The slowness in attaining the equilibrium value may partly be due to the times required for surfactant to diffuse to the surface and partly due to chemical rate processes at the interface. See Ref. 105 for similar studies with heptanoic acid and Ref. 106 for some anomalous effects. [Pg.34]

The situation is envisaged in which the total energy of a box of atoms can be calculated, and one wants to obtain the excess energy of an interface which has been constructed within the box. The simplest situation is if a static calculation has been made and the atomic positions are relaxed to the structure of minimum energy. However, free energy calculations are also feasible. Periodic boundary conditions parallel to the interface are employed, and perhaps also three dimensional periodicity, which implies that two boundaries per box are necessary. These technicalities as well as the method for calculating energies will not be discussed further here. [Pg.339]

By the total internal reflection condition at the liquid-liquid interface, one can observe interfacial reaction in the evanescent layer, a very thin layer of a ca. 100 nm thickness. Fluorometry is an effective method for a sensitive detection of interfacial species and their dynamics [10]. Time-resolved laser spectrofluorometry is a powerful tool for the elucidation of rapid dynamic phenomena at the interface [11]. Time-resolved total reflection fluorometry can be used for the evaluation of rotational relaxation time and the viscosity of the interface [12]. Laser excitation can produce excited states of adsorbed compound. Thus, the triplet-triplet absorption of interfacial species was observed at the interface [13]. [Pg.363]


See other pages where Relaxation methods interface is mentioned: [Pg.268]    [Pg.249]    [Pg.252]    [Pg.98]    [Pg.98]    [Pg.197]    [Pg.686]    [Pg.193]    [Pg.193]    [Pg.20]    [Pg.73]    [Pg.93]    [Pg.118]    [Pg.207]    [Pg.670]    [Pg.25]    [Pg.716]    [Pg.258]    [Pg.440]    [Pg.151]    [Pg.153]    [Pg.365]    [Pg.270]    [Pg.374]    [Pg.170]    [Pg.519]    [Pg.84]    [Pg.539]   


SEARCH



Chemical relaxation methods interface

© 2024 chempedia.info