Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative transfer reactions

The radical cation of 1 (T ) is produced by a photo-induced electron transfer reaction with an excited electron acceptor, chloranil. The major product observed in the CIDNP spectrum is the regenerated electron donor, 1. The parameters for Kaptein s net effect rule in this case are that the RP is from a triplet precursor (p. is +), the recombination product is that which is under consideration (e is +) and Ag is negative. This leaves the sign of the hyperfine coupling constant as the only unknown in the expression for the polarization phase. Roth et aJ [10] used the phase and intensity of each signal to detemiine the relative signs and magnitudes of the... [Pg.1601]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

Chain transfer is an important consideration in solution polymerizations. Chain transfer to solvent may reduce the rate of polymerization as well as the molecular weight of the polymer. Other chain-transfer reactions may iatroduce dye sites, branching, chromophoric groups, and stmctural defects which reduce thermal stabiUty. Many of the solvents used for acrylonitrile polymerization are very active in chain transfer. DMAC and DME have chain-transfer constants of 4.95-5.1 x lO " and 2.7-2.8 x lO " respectively, very high when compared to a value of only 0.05 x lO " for acrylonitrile itself DMSO (0.1-0.8 X lO " ) and aqueous zinc chloride (0.006 x lO " ), in contrast, have relatively low transfer constants hence, the relative desirabiUty of these two solvents over the former. DME, however, is used by several acryhc fiber producers as a solvent for solution polymerization. [Pg.277]

Electron-transfer reactions appear to be inherently capable of producing excited products when sufficient energy is released (154—157). This abiUty may be related to the speed of electron transfer, which is fast relative to atomic motion, so that vibrational excitation is inhibited (158). [Pg.270]

Electronic excitation from atom-transfer reactions appears to be relatively uncommon, with most such reactions producing chemiluminescence from vibrationaHy excited ground states (188—191). Examples include reactions of oxygen atoms with carbon disulfide (190), acetylene (191), or methylene (190), all of which produce emission from vibrationaHy excited carbon monoxide. When such reactions are carried out at very low pressure (13 mPa (lO " torr)), energy transfer is diminished, as with molecular beam experiments, so that the distribution of vibrational and rotational energies in the products can be discerned (189). Laser emission at 5 p.m has been obtained from the reaction of methylene and oxygen initiated by flash photolysis of a mixture of SO2, 2 2 6 (1 )-... [Pg.271]

Batch reaclors are tanks, usually provided with agitation and some mode of heat transfer to maintain temperature within a desirable range. They are primarily employed for relatively slow reactions of several hours duration, since the downtime for filling and emptying large equipment may be an hour or so. Agitation maintains uniformity and improves heat transfer. Modes of heat transfer are illustrated in Figs. 23-1 and 23-2. [Pg.695]

In analyzing the behavior of these types of tetrahedral intermediates, it should be kept in mind that proton-transfer reactions are usually fast relative to other steps. This circumstance permits the possibility that a minor species in equilibrium with the major species may be the major intermediate. Detailed studies of kinetics, solvent isotope effects, and the nature of catalysis are the best tools for investigating the various possibilities. [Pg.481]

Substitution, addition, and group transfer reactions can occur intramolecularly. Intramolecular substitution reactions that involve hydrogen abstraction have some important synthetic applications, since they permit functionalization of carbon atoms relatively remote from the initial reaction site. ° The preference for a six-membered cyclic transition state in the hydrogen abstraction step imparts position selectivity to the process ... [Pg.718]

Even the chemically robust perfluoroalkanes can undergo electron-transfer reactions (equation 4) because of their relatively high electron affinities [89]. Strong reduemg agents like alkali metals [90] or sodium naphthahde [91] are normally required for reaction, but perfluoroalkanes with low-energy, tert-C-F a anti-... [Pg.990]

Here, the relative stability of the anion radical confers to the cleavage process a special character. Thus, at a mercury cathode and in organic solvents in the presence of tetraalkylammonium salts, the mechanism is expected16 to be an ECE one in protic media or in the presence of an efficient proton donor, but of EEC type in aprotic solvents. In such a case, simple electron-transfer reactions 9 and 10 have to be associated chemical reactions and other electron transfers (at the level of the first step). Those reactions are shown below in detail ... [Pg.1006]

Pulsed source techniques have been used to study thermal energy ion-molecule reactions. For most of the proton and H atom transfer reactions studied k thermal) /k 10.5 volts /cm.) is approximately unity in apparent agreement with predictions from the simple ion-induced dipole model. However, the rate constants calculated on this basis are considerably higher than the experimental rate constants indicating reaction channels other than the atom transfer process. Thus, in some cases at least, the relationship of k thermal) to k 10.5 volts/cm.) may be determined by the variation of the relative importance of the atom transfer process with ion energy rather than by the interaction potential between the ion and the neutral. For most of the condensation ion-molecule reactions studied k thermal) is considerably greater than k 10.5 volts/cm.). [Pg.156]

Since it thus appears that reactions other than the atom transfer process are occurring, one must consider the possibility that the low k (thermal)/ (10.5 volts/cm.) ratios may result from a variation of the relative importance of the atom transfer reaction channel with ion energy. Similarly, in some of the cases where (thermal) = (10.5 volts/cm.) the relative importance of the atom transfer process may also change with ion energy. Thus the value of k(thermal)// (10.5 volts/cm.) does not necessarily provide conclusive evidence for the interaction potential between the ion and the neutral molecules. [Pg.170]

As a result of the conclusions reached in these studies, a simple competition method was devised 12, 32) to determine relative rates of hydride transfer reactions rather accurately. For example, to obtain relative reaction rates of ethyl ions with various additives, a suitable source of fully deuterated ethyl ions such as C3D8 or iso-C4Di0 was irradiated in the presence of a perprotonated additive (RH), leading to the formation of C2D6 and C2D5H by Reactions 2 and 3. [Pg.272]

Table III presents the relative rates of H2 transfer reactions from cyclo-C5H10 and C5H12 to propylene, ethylene, acetylene, and cyclopropane. These values were obtained by irradiating pentane-CwDm-02 mixtures with gamma rays, or with the argon resonance lines at 1048-1067 A. The results obtained by the two irradiation techniques are in fair agreement. Table III presents the relative rates of H2 transfer reactions from cyclo-C5H10 and C5H12 to propylene, ethylene, acetylene, and cyclopropane. These values were obtained by irradiating pentane-CwDm-02 mixtures with gamma rays, or with the argon resonance lines at 1048-1067 A. The results obtained by the two irradiation techniques are in fair agreement.
Table III shows that in the gas phase at a pressure of 40 torr the relative rates of the H2 transfer reactions from the cyclopentane ion to the various additives differ drastically from those derived from liquid phase radiolysis experiments. This indicates that the changes in density may profoundly affect the relative rates of the two competitive reactions, Reactions 22 and 28. Experimental results, which will be described in a later publication, indicate that in the liquid phase an increased importance of the H2 transfer reaction to some of the additives occurs at the expense of the H atom transfer reaction, Reaction 23. Table III shows that in the gas phase at a pressure of 40 torr the relative rates of the H2 transfer reactions from the cyclopentane ion to the various additives differ drastically from those derived from liquid phase radiolysis experiments. This indicates that the changes in density may profoundly affect the relative rates of the two competitive reactions, Reactions 22 and 28. Experimental results, which will be described in a later publication, indicate that in the liquid phase an increased importance of the H2 transfer reaction to some of the additives occurs at the expense of the H atom transfer reaction, Reaction 23.
The relative probabilities of Reactions 24, 25, and 26 were, respectively, 1.00, 0.25, and 0.12 at a hydrogen pressure of about 1 atmosphere (9). These numbers could be derived either by analyzing the stable alkanes formed in the unimolecular decompositions (Reactions 24-26) or from the products of the hydride transfer reactions between C5Hi2 and the alkyl ions. Elimination of H2 from protonated pentane may also occur, but it is difficult (although not impossible) to establish this reaction through neutral product analysis. [Pg.280]

In many cases, the values of A n and k2i may be directly or indirectly determined. We shall say no more about this relationship here, other than to indicate that it proves to be generally applicable, and is sufficiently accepted that the Marcus-Hush equation is now used to establish when an outer-sphere pathway is operative. In the context of this chapter, the involvement of the Kn term is interesting for it relates to the relative stabilization of various oxidation states by particular ligand sets. The factors which stabilize or destabilize particular oxidation states continue to play their roles in determining the value of Kn, and hence the rate of the electron transfer reaction. [Pg.191]

On the other hand. Type II process competes efficiently with the electron-transfer pathway in aerobic environments where the concentration of ground triplet state molecular oxygen is relatively high ( 0.27 mM), and singlet molecular oxygen (1O2) is the most abimdant ROS generated under these conditions, with a quantum yield 0.48 (Valle et al., 2011), eqn. 8. It is also possible an electron-transfer reaction from 3RF to 02 to form anion superoxide, but this reaction occurs with very low efficiency <0.1% (Lu et al., 2000). [Pg.12]


See other pages where Relative transfer reactions is mentioned: [Pg.842]    [Pg.278]    [Pg.466]    [Pg.163]    [Pg.538]    [Pg.749]    [Pg.2070]    [Pg.416]    [Pg.365]    [Pg.228]    [Pg.30]    [Pg.294]    [Pg.2]    [Pg.65]    [Pg.1004]    [Pg.1095]    [Pg.359]    [Pg.531]    [Pg.125]    [Pg.133]    [Pg.238]    [Pg.270]    [Pg.272]    [Pg.273]    [Pg.276]    [Pg.279]    [Pg.14]    [Pg.25]    [Pg.289]    [Pg.285]    [Pg.8]    [Pg.30]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Transfer reactions relative quantum yield

© 2024 chempedia.info