Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relationship between approaches

The relationship between the CRE approach and the FM approach to modeling turbulent reacting flows is summarized in Table 1.1. Despite the obvious and significant differences [Pg.24]


Let us briefly discuss the relationship between approaches which use basis sets and thus have a discrete single-particle spectrum and those which employ the Hartree-Fock hamiltonian, which has a continuous spectrum, directly. Consider an atom enclosed in a box of radius R, much greater than the atomic dimension. This replaces the continuous spectrum by a set of closely spaced discrete levels. The relationship between the matrix Hartree-Fock problem, which arises when basis sets of discrete functions are utilized, and the Hartree-Fock problem can be seen by letting the dimensions of the box increase to infinity. Calculations which use discrete basis sets are thus capable, in principle, of yielding exact expectation values of the hamiltonian and other operators. In using a discrete basis set, we replace integrals over the continuum which arise in the evaluation of expectation values by summations. The use of a discrete basis set may thus be regarded as a quadrature scheme. [Pg.16]

Table 3-3. Relationship Between Approach and Required Tower Size, at Constant Wet-Bulb Temperature, but Varying Cold-Water Temperature... Table 3-3. Relationship Between Approach and Required Tower Size, at Constant Wet-Bulb Temperature, but Varying Cold-Water Temperature...
Reservoir engineers describe the relationship between the volume of fluids produced, the compressibility of the fluids and the reservoir pressure using material balance techniques. This approach treats the reservoir system like a tank, filled with oil, water, gas, and reservoir rock in the appropriate volumes, but without regard to the distribution of the fluids (i.e. the detailed movement of fluids inside the system). Material balance uses the PVT properties of the fluids described in Section 5.2.6, and accounts for the variations of fluid properties with pressure. The technique is firstly useful in predicting how reservoir pressure will respond to production. Secondly, material balance can be used to reduce uncertainty in volumetries by measuring reservoir pressure and cumulative production during the producing phase of the field life. An example of the simplest material balance equation for an oil reservoir above the bubble point will be shown In the next section. [Pg.185]

The hard-sphere treatment also suggested a relationship between surface tension and the compressibility of the liquid. In a more classic approach [48], the equation... [Pg.61]

The presence of surface conductance behind the slip plane alters the relationships between the various electrokinetic phenomena [83, 84] further complications arise in solvent mixtures [85]. Surface conductance can have a profound effect on the streaming current and electrophoretic mobility of polymer latices [86, 87]. In order to obtain an accurate interpretation of the electrostatic properties of a suspension, one must perform more than one type of electrokinetic experiment. One novel approach is to measure electrophoretic mobility and dielectric spectroscopy in a single instrument [88]. [Pg.189]

A still different approach to multilayer adsorption considers that there is a potential field at the surface of a solid into which adsorbate molecules fall. The adsorbed layer thus resembles the atmosphere of a planet—it is most compressed at the surface of the solid and decreases in density outward. The general idea is quite old, but was first formalized by Polanyi in about 1914—see Brunauer [34]. As illustrated in Fig. XVII-12, one can draw surfaces of equipo-tential that appear as lines in a cross-sectional view of the surface region. The space between each set of equipotential surfaces corresponds to a definite volume, and there will thus be a relationship between potential U and volume 0. [Pg.625]

For modelling conformational transitions and nonlinear dynamics of NA a phenomenological approach is often used. This allows one not just to describe a phenomenon but also to understand the relationships between the basic physical properties of the system. There is a general algorithm for modelling in the frame of the phenomenological approach determine the dominant motions of the system in the time interval of the process treated and theti write... [Pg.116]

Two approaches to quantify/fQ, i.e., to establish a quantitative relationship between the structural features of a compoimd and its properties, are described in this section quantitative structure-property relationships (QSPR) and linear free energy relationships (LFER) cf. Section 3.4.2.2). The LFER approach is important for historical reasons because it contributed the first attempt to predict the property of a compound from an analysis of its structure. LFERs can be established only for congeneric series of compounds, i.e., sets of compounds that share the same skeleton and only have variations in the substituents attached to this skeleton. As examples of a QSPR approach, currently available methods for the prediction of the octanol/water partition coefficient, log P, and of aqueous solubility, log S, of organic compoimds are described in Section 10.1.4 and Section 10.15, respectively. [Pg.488]

The most notable studies are those of Ingold, on the orienting and activating properties of substituents in the benzene nucleus, and of Dewar on the reactivities of an extensive series of polynuclear aromatic and related compounds ( 5.3.2). The former work was seminal in the foundation of the qualitative electronic theory of the relationship between structure and reactivity, and the latter is the most celebrated example of the more quantitative approaches to the same relationship ( 7.2.3). Both of the series of investigations employed the competitive method, and were not concerned with the kinetics of reaction. [Pg.76]

Most of the qualitative relationships between color and structure of methine dyes based on the resonance theory were established independently during the 1940 s by Brooker and coworkers (16, 72-74) and by Kiprianov (75-78), and specific application to thiazolo dyes appeared later with the studies of Knott (79) and Rout (80-84). In this approach, the absorptions of dyes belonging to amidinium ionic system are conveyed by a group of contributing structures resulting from the different ways of localization of the 2n rr electrons on the 2n l atoms of the chromophoric cationic chain, rather than by a single formula ... [Pg.68]

Quantitative Calculations In precipitation gravimetry the relationship between the analyte and the precipitate is determined by the stoichiometry of the relevant reactions. As discussed in Section 2C, gravimetric calculations can be simplified by applying the principle of conservation of mass. The following example demonstrates the application of this approach to the direct analysis of a single analyte. [Pg.250]

There are two ways to arrive at the relationship between aj and the concentration expressed as, say, a mole fraction. One is purely thermodynamic and involves experimental observations the other involves a model and is based on a statistical approach. We shall examine both. [Pg.510]

Because many studies have shown a direct relationship between pesticide sorption and organic carbon content of sod, attempts have been made to develop a universal sorption coefficient based on sorption of the pesticide to sod organic carbon (44). Sorption based on sod organic carbon is expressed as C, where is pesticide sorbed per unit mass sod organic carbon, and C is pesticide solution concentration after equdibration. If. is the fraction of organic carbon, can be obtained from i in the equation. Assumptions in the use of this approach include... [Pg.221]

Standards used to constmct a cahbration curve must be prepared such that the matrix of the standard is identical to the sample s matrix because the values of the parameters k and b associated with a linear cahbration curve are matrix dependent. Many areas of chemical analysis are plagued by matrix effects, and it is often difficult to duphcate the sample matrix when preparing external standards. Because it is desirable to eliminate matrix effects, cahbration in the sample matrix itself can be performed. This approach is called the standard addition method (SAM) (14). In this method, the standards are added to the sample matrix and the response of the analyte plus the standard is monitored as a function of the added amount of the standard. The initial response is assumed to be Rq, and the relationship between the response and the concentration of the analyte is... [Pg.427]

The ion transport number is defined as the fraction of current carried through the membrane by counterions. If the concentration of fixed charges in the membrane is high compared to the concentration of the ambient solution, then the mobile ions in the IX membrane are mosdy counterions, co-ions are effectively excluded, and the ion transport number then approaches 1. Commercial membranes have ion transport numbers in dilute solutions of ca 0.85—0.95. The relationship between ion transport number and current efficiency is shown in Figure 3 where is the fraction of current carried by the counterions (anions) through the AX membrane and is the fraction of current carried by the counterions (cations) through the CX membrane. The remainder of the current (1 — in the case of the AX membranes and (1 — in the case of the CX membranes is carried by co-ions and... [Pg.173]

Other cases, involving an arbitrary relationship between the solute retention factor and the modulator concentration can be handled analytically using the approaches of Frey [Biotechnol. Bioeng., 35, 1055 (1990)] and Carta and Striugfield []. Chromatogr, 605, 151 (1992)]. [Pg.1536]


See other pages where Relationship between approaches is mentioned: [Pg.43]    [Pg.24]    [Pg.226]    [Pg.43]    [Pg.24]    [Pg.226]    [Pg.1490]    [Pg.310]    [Pg.478]    [Pg.474]    [Pg.529]    [Pg.530]    [Pg.251]    [Pg.682]    [Pg.682]    [Pg.705]    [Pg.90]    [Pg.163]    [Pg.7]    [Pg.37]    [Pg.110]    [Pg.127]    [Pg.699]    [Pg.810]    [Pg.69]    [Pg.506]    [Pg.169]    [Pg.272]    [Pg.410]    [Pg.76]    [Pg.97]    [Pg.157]    [Pg.237]    [Pg.6]    [Pg.327]   


SEARCH



© 2024 chempedia.info