Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relation with Experimental Work

Despite its great potential, in the near future CFD will not completely replace experimental work or standard approaches currently used by the chemical engineering community. In this connection it is even not sure that CFD is guaranteed to succeed or even be an approach that will lead to improved results in comparison with standard approaches. For single-phase turbulent flows and especially for multiphase flows, it is imperative that the results of CFD analysis somehow be compared with experimental data in order to assess the validity of the physical models and the computational algorithms. In this connection we should mention that only computational results that possess invariance with respect to spatial and temporal discretization should be confronted with experimental data. A CFD model usually gives very detailed information on the temporal and spatial variation of many key quantities (i.e., velocity components, phase volume fractions, temperatures, species concentrations, turbulence parameters), which leads to in- [Pg.233]


The number of theoretical investigations of transition metal complexes with carbodiphosphoranes and related divalent carbon(O) ligands is rather small. Quantum chemical calculations of the nickel complexes (CO) Ni-C(PPh3)2 with n = 2, 3 have been pubhshed together with experimental work which describes the S3mthesis and X-ray structure analyses of the compounds [107]. The first systematic... [Pg.66]

Chapters V-X deal respectively with Heterocyclic and Alicyclic Compounds Miscellaneous Reactions Organic Reagents in Inorganic and Organic Chemistry Dyestuffs, Indicators and Related Compounds Some Physiologically-Active Compounds and Synthetic Polymers. Many of these preparations are of course intended for advanced students, but a mere perusal of the experimental details of selected preparations by those whose time for experimental work is limited may assist to impress them on the memory. Attention is particularly directed to the chapter... [Pg.1193]

Much of the experimental work in chemistry deals with predicting or inferring properties of objects from measurements that are only indirectly related to the properties. For example, spectroscopic methods do not provide a measure of molecular stmcture directly, but, rather, indirecdy as a result of the effect of the relative location of atoms on the electronic environment in the molecule. That is, stmctural information is inferred from frequency shifts, band intensities, and fine stmcture. Many other types of properties are also studied by this indirect observation, eg, reactivity, elasticity, and permeabiHty, for which a priori theoretical models are unknown, imperfect, or too compHcated for practical use. Also, it is often desirable to predict a property even though that property is actually measurable. Examples are predicting the performance of a mechanical part by means of nondestmctive testing (qv) methods and predicting the biological activity of a pharmaceutical before it is synthesized. [Pg.417]

A weaker but more widely applicable criterion is that the rate constant estimate should be consistent with the body of experimental work on closely related reactions. A third factor is that of style, which is essentially equivalent to the contemporary state of mechanistic chemistry it may seem more reasonable to write a mechanism for one of the forms than for the alternative. Styles change, however. [Pg.124]

G. A. White We have done some experimental work on impregnating catalyst with potash, and, in fact, potash has been used in related fields to inhibit carbon formation primarily from hydrocarbons. We find that the mechanism of carbon formation from hydrocarbons is quite different from that from syngas. So an agent that is effective in reducing the formation of carbon from one source can be quite different with that from another source. You have to be a little bit specific in terms of the feed material from which you are trying to prevent carbon formation. [Pg.173]

The relation between c and / and X (defined by equation 5.1) is shown in Figure 5.4, where it is seen that separate curves are given according to the nature of the flow of the two phases. This relation was developed from studies on the flow in small tubes of up to 25 mm diameter with water, oils, and hydrocarbons using air at a pressure of up to 400 kN/m . For mass flowrates per unit area of U and G for the liquid and gas, respectively, Reynolds numbers Rei L d/fii ) and Rec(G d/fia) may be used as criteria for defining the flow regime values less than 1000 to 2000, however, do not necessarily imply that the fluid is in truly laminar flow. Later experimental work showed that the total pressure has an influence and data presented by Gr1H ITH(i9) may be consulted where... [Pg.188]

Owing to the rapid development of the field from an experimental point of view, and the persistence of discussions on some of the aspects outlined above, a chapter on the pzc that includes a discussion of the relation between the electrochemical and the ultrahigh vacuum (UHV) situation in reference to the conditions at the pzc seems timely. This review of the literature will not be exhaustive but selective, taking into account the compilations already existing. In any case, the objective is to evaluate the existing data in order to recommend the most reliable. Finally, the data on pzc will be discussed in comparison with electron work function values. The role and significance of work functions in electrochemistry were discussed by Trasatti6 in 1976. [Pg.6]

The modern discipline of Materials Science and Engineering can be described as a search for experimental and theoretical relations between a material s processing, its resulting microstructure, and the properties arising from that microstructure. These relations are often complicated, and it is usually difficult to obtain closed-form solutions for them. For that reason, it is often attractive to supplement experimental work in this area with numerical simulations. During the past several years, we have developed a general finite element computer model which is able to capture the essential aspects of a variety of nonisothermal and reactive polymer processing operations. This "flow code" has been Implemented on a number of computer systems of various sizes, and a PC-compatible version is available on request. This paper is intended to outline the fundamentals which underlie this code, and to present some simple but illustrative examples of its use. [Pg.270]

However, the components of the yj2) e, e tensor are chiral (i.e., only present in a chiral isotropic medium), whereas the components of the tensors y 2) and y(2) meeare achiral (i.e., present in any isotropic medium, chiral or achiral). Hence, only the electric dipole response of chiral isotropic materials is related to chirality. The experimental work on chiral polymers described in Section 4 showed that large magnetic contributions to the nonlinearity are due to chirality. However, such contributions will therefore not survive in chiral isotropic media. In this respect, the electric dipole contributions associated with chirality may prove more interesting for applications. [Pg.564]


See other pages where Relation with Experimental Work is mentioned: [Pg.227]    [Pg.233]    [Pg.227]    [Pg.233]    [Pg.227]    [Pg.233]    [Pg.227]    [Pg.233]    [Pg.156]    [Pg.332]    [Pg.300]    [Pg.155]    [Pg.686]    [Pg.100]    [Pg.68]    [Pg.39]    [Pg.112]    [Pg.51]    [Pg.134]    [Pg.7]    [Pg.187]    [Pg.208]    [Pg.137]    [Pg.296]    [Pg.393]    [Pg.146]    [Pg.269]    [Pg.648]    [Pg.325]    [Pg.322]    [Pg.1683]    [Pg.236]    [Pg.237]    [Pg.40]    [Pg.249]    [Pg.137]    [Pg.281]    [Pg.456]    [Pg.234]    [Pg.56]    [Pg.76]    [Pg.44]    [Pg.29]   


SEARCH



Experimental work

Working Relations

Working with

© 2024 chempedia.info