Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions regioselectivity

Equation 2.13), undergo slow but very clean regioselective cycloaddition reactions, under carefully controlled thermal conditions with both electron-poor and electron-rich dienophiles. [Pg.42]

Dihydrodiazepines have been shown to undergo regioselective cycloaddition reactions with nitrile oxides or nitrile imines (88MI1 89JHC1619). [Pg.38]

Aryl isoselenocyanates 4-RC6H4NCSe (R=H, Br, Cl, MeO) (prepared by selenation and dehydration of A-arylformamides) undergo regioselective cycloaddition reactions with 4-diethylamino-3-butyn-2-one in refluxing THF yielding W-arylselenetimines 11 (Scheme 9) <2004H(62)521>. [Pg.473]

Adamantane-2-thione undergoes a concerted regioselective cycloaddition reaction with alkynoic acids to give 2-spiro-linked l,3-oxathiin-6-ones (Scheme 32). When applied to thiofenchone, the reaction also appears to be stereospecific <03EJO3727>. [Pg.425]

The 5-bromo derivative 136 was the key starting material for the preparation of both classes of compounds. It was obtained from 135 (R = H) by addition of bromine to the C4-C5 double bond followed by ehmination of HBr, which can be spontaneous or induced by TEA. Stdle reaction on 136 (BusSnR, (Ph3P)2BnClPd) performed in toluene afforded the vinyl compoimd 137 (70%), the ethenyl derivative 138 (86%), and the aryl or heteroaryl compounds 139 (45-70%). Isothiazoles 140 fimctionahsed at C-5 with an isoxa-zoline ring were prepared by a regioselective cycloaddition reaction starting from the vinyl derivative 137 and nitrile oxides [46]. [Pg.199]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

The reaction of alkenylcarbene complexes and alkynes in the presence of Ni(0) leads to cycloheptatriene derivatives in a process which can be considered as a [3C+2S+2S] cycloaddition reaction [125]. As shown in Scheme 77, two molecules of the alkyne and one molecule of the carbene complex are involved in the formation of the cycloheptatriene. This reaction is supposed to proceed through the initial formation of a nickel alkenylcarbene complex. A subsequent double regioselective alkyne insertion produces a new nickel carbene complex, which evolves by an intramolecular cycloprop anation reaction to form a nor-caradiene intermediate. These species easily isomerise to the observed cycloheptatriene derivatives (Scheme 77). [Pg.110]

Diels Alder reaction of tosylimine 108 obtained by thermal [2+2] cycloaddition of p-toluensulphonylisocyanate and methylglioxylate [108] provides a method for synthesizing nitrogen-containing heterocycles. The tosylimine was not isolated but was used directly in situ in several cycloaddition reactions (Scheme 2.45) which were completely regioselective [109]. In the case... [Pg.72]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

The cycloaddition of photoenol of o-methylbenzaldehyde 66 with 5-alkyli-dene-l,3-dioxane-4,6-dione derivatives 67 is an example of a photo-induced Diels Alder reaction in which one component, the diene in this case, is generated by irradiation [48]. The yields of some cycloadducts 68, generated by photo-irradiation of a benzene solution of 66 and 67 at room temperature, are reported in Table 4.14. The first step of the reaction is the formation of (E)-enol 69 and (Z)-enol 70 (Equation 4.7) by an intramolecular hydrogen abstraction of 66 followed by a stereo- and regioselective cycloaddition with... [Pg.166]

Cycloaddition reactions of (E)-l-acetoxybutadiene (18a) and (E)-l-methoxy-butadiene (18b) with the acrylic and crotonic dienophiles 19 were studied under high pressure conditions [9] (Table 5.1). Whereas the reactions of 18a with acrylic dienophiles regioselectively and stereoselectively afforded only ortho-enJo-adducts 20 in fair to good yields, those with crotonic dienophiles did not work. Similar results were obtained in the reactions with diene 18b. The loss of reactivity of the crotonic dienophiles has been ascribed to the combination of steric and electronic effects due to the methyl group at the )S-carbon of the olefinic double bond. [Pg.208]

Although 1-vinylnaphthalene thermally reacts with 4-acetoxy-2-cyclopenten-1-one (98) to regioselectively afford 99, the isomer 2-vinylnaphthalene gives the same thermal cycloaddition with low yield (30 %) and reacts satisfactorily only with 98 at 10 kbar (Scheme 5.10). Both products 99 and 101 were converted into the cyclopenta[a]phenanthren-15-one (100) and cyclopenta[c]phenanthren-l-one (102) isomers. Acetoxyketone 98 acts as a synthetic equivalent of cyclo-pentadienone (114 in Scheme 5.14) in cycloaddition reactions [33]. [Pg.220]

The authors have also elaborated a microwave-enhanced one-pot procedure [90] for the Huisgen 1,3-dipolar cycloaddition reaction. In a typical procedure, a pyrazinone with a triple bond connected to the core via C - O linkage, was reacted with a suitable benzylic bromide and NaNs in presence of the Cu(I) catalyst in a t Bu0H/H20 system under microwave irradiation (Scheme 26). The cycloaddition was found to proceed cleanly and with full regioselectivity. As the azide is generated in situ, this procedure avoids the isolation and purification of hazardous azides, which is especially important when handling the ahphatic ones, which are known to be toxic and explosive in nature. [Pg.287]

The NHCs have been used as ligands of different metal catalysts (i.e. copper, nickel, gold, cobalt, palladium, rhodium) in a wide range of cycloaddition reactions such as [4-1-2] (see Section 5.6), [3h-2], [2h-2h-2] and others. These NHC-metal catalysts have allowed reactions to occur at lower temperature and pressure. Furthermore, some NHC-TM catalysts even promote previously unknown reactions. One of the most popular reactions to generate 1,2,3-triazoles is the 1,3-dipolar Huisgen cycloaddition (reaction between azides and alkynes) [8]. Lately, this [3h-2] cycloaddition reaction has been aided by different [Cu(NHC)JX complexes [9]. The reactions between electron-rich, electron-poor and/or hindered alkynes 16 and azides 17 in the presence of low NHC-copper 18-20 loadings (in some cases even ppm amounts were used) afforded the 1,2,3-triazoles 21 regioselectively (Scheme 5.5 Table 5.2). [Pg.134]

Analogously, the 1,3-dipolar cycloaddition reaction of 2-diazopropane with propargyl alcohol 62b, performed at 0 °C in dichloromethane, was completed in less then 10 h and led to a monoadduct 63b with the same regioselective addition mode of 59 to the triple bond. The HMBC spectrum showed correlations between the ethylenic proton and the carbons C3 and C5 and between the methyl protons and the carbons C3 and C4. [Pg.145]

More recently, [2+3] cycloaddition reaction of the tri-te/t-butylphenylphosphaethyne (25) has been reinvestigated, when in spite of the steric encumbrance of extremely bulky Mes group, the use of trimethylsilylated diazomethane (24) makes its cycloaddition successful, which is followed by SiMe3/H migration yielding bulky [l,2,4]diazaphospholes [33], Phosphaalkyne 25 reacts with 24 in a regioselective manner to form intermediate cycloadduct 26, which undergoes facile aromatization... [Pg.181]


See other pages where Cycloaddition reactions regioselectivity is mentioned: [Pg.586]    [Pg.410]    [Pg.168]    [Pg.153]    [Pg.647]    [Pg.309]    [Pg.78]    [Pg.145]    [Pg.216]    [Pg.325]    [Pg.515]    [Pg.519]    [Pg.662]    [Pg.807]    [Pg.36]    [Pg.216]    [Pg.288]    [Pg.289]    [Pg.291]    [Pg.46]    [Pg.46]    [Pg.170]    [Pg.150]    [Pg.136]    [Pg.140]    [Pg.145]    [Pg.807]    [Pg.145]    [Pg.535]    [Pg.133]    [Pg.299]    [Pg.179]   
See also in sourсe #XX -- [ Pg.498 , Pg.502 ]

See also in sourсe #XX -- [ Pg.498 , Pg.499 , Pg.500 , Pg.501 ]




SEARCH



1,3-cycloaddition regioselective

1.3- dipolar cycloaddition reactions regioselective addition

Cycloaddition regioselectivity

Dipolar cycloaddition reactions regioselectivity

Regioselective palladium-catalyzed cycloaddition reactions

Regioselective reaction

Regioselectivity diazoalkane cycloaddition reactions

Regioselectivity miinchnone cycloaddition reactions

Regioselectivity of Cycloaddition Reactions

© 2024 chempedia.info