Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference electrode thickness

Six iron anodes are required for corrosion protection of each condenser, each weighing 13 kg. Every outflow chamber contains 14 titanium rod anodes, with a platinum coating 5 /tm thick and weighing 0.73 g. The mass loss rate for the anodes is 10 kg A a for Fe (see Table 7-1) and 10 mg A a for Pt (see Table 7-3). A protection current density of 0.1 A m is assumed for the coated condenser surfaces and 1 A m for the copper alloy tubes. This corresponds to a protection current of 27 A. An automatic potential-control transformer-rectifier with a capacity of 125 A/10 V is installed for each main condenser. Potential control and monitoring are provided by fixed zinc reference electrodes. Figure 21-2 shows the anode arrangement in the inlet chamber [9]. [Pg.469]

As shown on Fig. 4.1, the counter and reference electrodes are deposited on the opposite side of the gas-impervious sohd electrolyte component, which is typically 500 pm to 2 mm thick. The electrolyte thickness is not crucial, but it is preferable to keep it low, so that the ohmic drop in it is small during operation, preferably below 100-600 mV. [Pg.117]

Checking the absence of internal mass transfer limitations is a more difficult task. A procedure that can be applied in the case of catalyst electrode films is the measurement of the open circuit potential of the catalyst relative to a reference electrode under fixed gas phase atmosphere (e.g. oxygen in helium) and for different thickness of the catalyst film. Changing of the catalyst potential above a certain thickness of the catalyst film implies the onset of the appearance of internal mass transfer limitations. Such checking procedures applied in previous electrochemical promotion studies allow one to safely assume that porous catalyst films (porosity above 20-30%) with thickness not exceeding 10pm are not expected to exhibit internal mass transfer limitations. The absence of internal mass transfer limitations can also be checked by application of the Weisz-Prater criterion (see, for example ref. 33), provided that one has reliable values for the diffusion coefficient within the catalyst film. [Pg.554]

Figure 4 shows the application (6) of potentials to the Pt and Au electrodes of the sandwich (vs. a reference electrode elsewhere in the contacting electrolyte solution) so that they span the E° of the poly-[Co(II/I)TPP] couple (Fig. 4B). There is a consequent redistribution of the concentrations of the sites in the two oxidation states to achieve the steady state linear gradients shown in the inset. Figure 4C represents surface profilometry of a different film sample in order to determine the film thickness from that the actual porphyrin site concentration (0.85M). The flow of self exchange-supported current is experimentally parameterized by applying Fick s first law to the concentration-distance diagram in Fig. 4B ... Figure 4 shows the application (6) of potentials to the Pt and Au electrodes of the sandwich (vs. a reference electrode elsewhere in the contacting electrolyte solution) so that they span the E° of the poly-[Co(II/I)TPP] couple (Fig. 4B). There is a consequent redistribution of the concentrations of the sites in the two oxidation states to achieve the steady state linear gradients shown in the inset. Figure 4C represents surface profilometry of a different film sample in order to determine the film thickness from that the actual porphyrin site concentration (0.85M). The flow of self exchange-supported current is experimentally parameterized by applying Fick s first law to the concentration-distance diagram in Fig. 4B ...
Unsuitable position of the reference electrode resulting in inclusion of a high ohmic potential drop between reference and working electrode. Moreover, when extended surfaces are used over which the mass transfer boundary layer thickness depends on position, a suitable number of independent reference electrodes should be used to measure local overpotentials on electrically isolated segments of the working electrode. [Pg.252]

Figure 1. Schematic representation of potential profile and charge distribution across an anodic oxide film of thickness S on aluminum (a) hypothetical situation in the absence of any current (b) in the presence of an anodic current caused by corrosion or by an external source. RE, reference electrode to which the potential of aluminum is referred. Figure 1. Schematic representation of potential profile and charge distribution across an anodic oxide film of thickness S on aluminum (a) hypothetical situation in the absence of any current (b) in the presence of an anodic current caused by corrosion or by an external source. RE, reference electrode to which the potential of aluminum is referred.
From the practical point of view, this is the discharge of a SC device under constant power conditions that is normally of the most interest. That is why the present work is aimed at determining the optimum electrode thickness that enables one to obtain the maximum energy, E, output (referred to as unit of volume or mass) if the discharge with a fixed power takes place. For the sake of simplicity we will speak about the energy density (E) and power density (p), but all the expressions derived below can easily be transformed to obtain the specific energy or power, if the volume is substituted by mass. [Pg.79]

A representative example of the upd process is copper on gold and an extremely illuminating study of this system using repulsive AFM was reported by Manne et al. (1991). The authors employed a commercially available AFM, the essentials of which are shown in Figure 2.33. The reference electrode was a copper wire in contact with the electrolyte at the outlet of the cell. The counter electrode was the stainless steel spring clip holding the AFM cantilever in place. The working electrode was a 100 nm thick evaporated Au film (which is known to expose mainly the Au(111) surface) mounted on an (x, v) translator. [Pg.92]

In addition to bilayered electrodes with a functional layer and a support layer, electrodes have also been produced with multilayered or graded structures in which the composition, microstructure, or both are varied either continuously or in a series of steps across the electrode thickness to improve the cell performance compared to that of a single- or bilayered electrode. For example, triple-layer electrodes commonly utilize a functional layer with high surface area and small particle size, a second functional layer (e.g., reference [26]) or diffusion layer with high porosity and coarse structure, and a current collector layer with coarse porosity and only the electronically conductive phase (e.g., reference [27]) to improve the contact with the interconnect. [Pg.249]

If the activity of the chloride ion is maintained at a constant level, then sce will also have a constant value, which explains why this couple is the basis for a reference electrode. The activity of chloride ion is best maintained by employing a constant surplus of KCl crystals at the foot of the tube to ensure saturation (see Figure 3.4). An SCE not having a thick crust of KCl crystals should be avoided, since its potential might not be known. [Pg.35]

The frontier between the depletion and the accumulation situations of the space charge layer is defined by the flat band potential. In fact, when the potential is constant all along the thickness of the electrode, the mobile charge (and naturally the fixed charge) distribution is uniform. In the case of the interface of Si electrode with an electrolyte, the corresponding bias potential has to be determined with respect to the reference electrode. The value of the flat band potential Vfb is expected... [Pg.310]

Clark oxygen electrode. [D. t. Sawyer, A. Sobkowiak, and J. L. Roberts, Jr., Electrochemistry for Chemists, 2nd eel. (New York Wiley. 1995).] A modern, commercial oxygen electrode is a three-electrode design with a Au cathode, a Ag anode, a Ag I AgBr reference electrode, and a 50-(im-thick fluorinated ethylene-propylene polymer membrane. Leland Clark, who invented the Clark oxygen electrode, also invented the glucose monitor and the heart-lung machine. [Pg.358]


See other pages where Reference electrode thickness is mentioned: [Pg.479]    [Pg.493]    [Pg.442]    [Pg.570]    [Pg.422]    [Pg.76]    [Pg.188]    [Pg.344]    [Pg.340]    [Pg.268]    [Pg.108]    [Pg.474]    [Pg.416]    [Pg.491]    [Pg.466]    [Pg.127]    [Pg.57]    [Pg.30]    [Pg.86]    [Pg.154]    [Pg.216]    [Pg.305]    [Pg.111]    [Pg.247]    [Pg.132]    [Pg.242]    [Pg.383]    [Pg.233]    [Pg.421]    [Pg.59]    [Pg.596]    [Pg.598]    [Pg.205]    [Pg.206]    [Pg.137]    [Pg.308]    [Pg.93]    [Pg.442]    [Pg.389]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Electrode thick

Electrodes thickness

Reference electrodes

© 2024 chempedia.info