Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive amination selectivity

Scheme 25 Excess of 2.5 equiv of aldehyde for the reductive amination selectively leads to the formation of secondary amines 254. Reagents and conditions a diamine, DiPEA, DMF b 1-2.5 equiv R-CHO, CH2Cl2 TMOF, 2-NaBH(AcO)3, AcOH, DMF c BnBr, DBU, DMF d 10% TFA in CH2CI2... Scheme 25 Excess of 2.5 equiv of aldehyde for the reductive amination selectively leads to the formation of secondary amines 254. Reagents and conditions a diamine, DiPEA, DMF b 1-2.5 equiv R-CHO, CH2Cl2 TMOF, 2-NaBH(AcO)3, AcOH, DMF c BnBr, DBU, DMF d 10% TFA in CH2CI2...
Dicyclohexylarnine may be selectively generated by reductive alkylation of cyclohexylamine by cyclohexanone (15). Stated batch reaction conditions are specifically 0.05—2.0% Pd or Pt catalyst, which is reusable, pressures of 400—700 kPa (55—100 psi), and temperatures of 75—100°C to give complete reduction in 4 h. Continuous vapor-phase amination selective to dicyclohexylarnine is claimed for cyclohexanone (16) or mixed cyclohexanone plus cyclohexanol (17) feeds. Conditions are 5—15 s contact time of <1 1 ammonia ketone, - 3 1 hydrogen ketone at 260°C over nickel on kieselguhr. With mixed feed the preferred conditions over a mixed copper chromite plus nickel catalyst are 18-s contact time at 250 °C with ammonia alkyl = 0.6 1 and hydrogen alkyl = 1 1. [Pg.208]

Morpholiaoglucopyranosides have beea syathesized from sucrose by selective lead tetraacetate oxidatioa of the fmctofuranosyl ring to a dialdehyde (6). This product was subjected to reductive amination with sodium borohydride and a primary amine such as benzylamine to produce the /V-henzy1morpho1ino derivative (7) (99). [Pg.35]

Reductive amination ol aldehydes or ketones by cyanoborohydride (or tnacetoxyborohydride) anion Selective reduction of carbonyls to alcohol, oximes to N alkylhydroxylarmnes, enamines to amines... [Pg.42]

Amino acids can be synthesized in racemic form by several methods, including ammonolysis of an a-bromo acid, alkylation of diethyl acetamido-malonate, and reductive amination of an cv-keto acid. Alternatively, an enantio-selective synthesis of amino acids can be carried out using a chiral hydrogenation catalyst. [Pg.1049]

Besides direct reduction, a one-pot reductive amination of aldehydes and ketones with a-picoline-borane in methanol, in water, and in neat conditions gives the corresponding amine products (Scheme 8.2).40 The synthesis of primary amines can be performed via the reductive amination of the corresponding carbonyl compounds with aqueous ammonia with soluble Rh-catalyst (Eq. 8.17).41 Up to an 86% yield and a 97% selectivity for benzylamines were obtained for the reaction of various benzaldehydes. The use of a bimetallic catalyst based on Rh/Ir is preferable for aliphatic aldehydes. [Pg.222]

To investigate the feasibility of employing 3-oxidopyridinium betaines as stabilized 1,3-dipoles in an intramolecular dipolar cycloaddition to construct the hetisine alkaloid core (Scheme 1.8, 77 78), a series of model cycloaddition substrates were prepared. In the first (Scheme 1.9a), an ene-nitrile substrate (i.e., 83) was selected as an activated dipolarophile functionality. Nitrile 66 was subjected to reduction with DIBAL-H, affording aldehyde 79 in 79 % yield. This was followed by reductive amination of aldehyde x with furfurylamine (80) to afford the furan amine 81 in 80 % yield. The ene-nitrile was then readily accessed via palladium-catalyzed cyanation of the enol triflate with KCN, 18-crown-6, and Pd(PPh3)4 in refluxing benzene to provide ene-nitrile 82 in 75 % yield. Finally, bromine-mediated aza-Achmatowicz reaction [44] of 82 then delivered oxidopyridinium betaine 83 in 65 % yield. [Pg.11]

The N-terminal methionine residue of protein can also be employed for selective PEGylation using aldehyde-terminated PEG via a reductive amination reaction, because the N-terminal primary amine has a lower pAa of 7.8 than other amines such as lysines, whose pZa is 10.1 [7]. After reaction with aldehyde-terminated PEG at low pH, the resultant imine is reduced with sodium cyanoborohydrate to provide PEGylated protein (Fig. 4) [8, 9]. This technique was used for the production of Neulasta, which was approved for use by the FDA in 2002 [10]. [Pg.119]

The first example of this type of transformation was reported in 1974 [76]. Three catalysts were investigated, namely [Co2(CO)8], [Co(CO)g/PBu ], and [Rh6(CO)i6]. The [Co OJg/PBu ] catalyst showed activity for reductive animation using ammonia and aromatic amines. The [Rh6(CO)16] catalyst could be used for reductive animation using the more basic aliphatic amines that were found to poison the cobalt catalyst. This early report pointed out that the successful reductive animation of iso-butanal (Me2CCHO) with piperidine involves selective enamine hydrogenation, that reductive animation of cyclohexanone with isopropylamine probably involves imine hydrogenation, and that reductive amination of benzaldehyde with piperidine would presumably involve the reduction of a carbinolamine. [Pg.438]

Selectivities of about 2 1 are the best found for this type of hydrogenation and are highly dependent on the secondary amine used they seem to correlate with the nucleophilicity of the amine. Reductive amination of PhCHO with ben-zylamine can proceed through an imine intermediate, and thus gave better selectivities (12 1) but was found to be sluggish using this catalyst system. [Pg.438]

Given the previous discussion on reductive amination, it is surprising that the potentially more complicated domino hydroformylation-reductive amination reactions have been more thoroughly developed. The first example of hydroaminomethylation was reported as early as 1943 [83]. The most synthetically useful procedures utilize rhodium [84-87], ruthenium [88], or dual-metal (Rh/Ir) catalysts [87, 89, 90]. This area was reviewed extensively by one of the leading research groups in 1999 [91], and so is only briefly outlined here as the second step in the domino process is reductive amination of aldehydes. Eilbrachfs group have shown that linear selective hydroaminomethylation of 1,2-disubstituted alkenes... [Pg.439]

This group subsequently invented a domino reaction consisting of isomerization of internal to terminal alkenes, followed by linear selective hydroformyla-tion and reductive amination (Scheme 15.14) [89]. [Pg.440]

A stereoselective total synthesis of ( )-hirsutine has been developed by Brown et al. (179). Catalytic hydrogenation of hydroxycyclopentenone 327, prepared previously (180), afforded a mixture of isomeric diols 328, which were quantitatively cleaved by sodium periodate to supply 329. Reductive amination of 329 with tryptamine resulted in tetrahydropyridine 330, which upon treatment with aqueous methanol in the presence of hydrochloric acid gave indolo-[2,3-a]quinolizine 321 with pseudo stereochemistry. Conversion of 321 to ( )-hirsutine was accomplished in a similar manner by Wenkert et al. (161) via selective reduction with diisobutylaluminum hydride and methylation with methanol (179). [Pg.201]

Synthesis of a C(8)-C(18) segment of the larger fragment of lb using the same basic strategy is depicted in Scheme 25. Here, hydroxy ketone 176 was subjected to syn-selective (dr of crude product=90 10) reductive amination [42] with sodium cyanoborohydride and benzylamine followed by tetrahydro-oxazine formation using aqueous formaldehyde. The resulting heterocycle 182 was then converted to unsaturated ester 184 by successive desilylation, oxidation, and entirely (Z)-selective Horner-Wadsworth-Emmons olefination. Re-... [Pg.237]

Aqueous organometalHc catalysis allows the use of NH3-solutions in water for the direct synthesis of amines from olefins in a combined hydroformylation/reductive amination procedure (Scheme 4.19). The hydroformylation step was catalyzed by the proven Rh/TPPTS or Rh/BINAS (44) catalysts, while the iridium complexes formed from the same phosphine ligands and [ IrCl(COD) 2] were found suitable for the hydrogenation of the intermediate imines. With sufficiently high NH3/olefin ratios (8/1) high selectivity towards the formation of primary amines (up to 90 %) could be achieved, while in an excess of olefin the corresponding... [Pg.138]

A pH-dependent chemoselective catalytic reductive amination of a-keto acids, affording a-amino acids with HCOONH4 in water, was achieved using the complex 31 or its precursor 28 as the catalyst [51]. The formation rates of alanine and lactic acid from pyruvic acid exhibited a maximum value around pH 5 and pH 3, respectively, and therefore, alanine was obtained quite selectively (96%) with a small amount of lactic acid (4%) at pH 5 (Scheme 5.18). A variety of nonpolar, uncharged polar and charged polar amino acids were also synthesized in high yields. [Pg.122]

An elegant four-enzyme cascade process was described by Nakajima et al. [28] for the deracemization of an a-amino acid (Scheme 6.13). It involved amine oxidase-catalyzed, (i )-selective oxidation of the amino acid to afford the ammonium salt of the a-keto acid and the unreacted (S)-enantiomer of the substrate. The keto acid then undergoes reductive amination, catalyzed by leucine dehydrogenase, to afford the (S)-amino acid. NADH cofactor regeneration is achieved with formate/FDH. The overall process affords the (S)-enantiomer in 95% yield and 99% e.e. from racemic starting material, formate and molecular oxygen, and the help of three enzymes in concert. A fourth enzyme, catalase, is added to decompose the hydrogen peroxide formed in the first step which otherwise would have a detrimental effect on the enzymes. [Pg.119]


See other pages where Reductive amination selectivity is mentioned: [Pg.108]    [Pg.283]    [Pg.44]    [Pg.54]    [Pg.267]    [Pg.29]    [Pg.29]    [Pg.954]    [Pg.59]    [Pg.59]    [Pg.210]    [Pg.21]    [Pg.800]    [Pg.870]    [Pg.267]    [Pg.196]    [Pg.438]    [Pg.527]    [Pg.539]    [Pg.90]    [Pg.91]    [Pg.152]    [Pg.76]    [Pg.118]    [Pg.75]    [Pg.186]    [Pg.411]    [Pg.285]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Amine selection

Amines reduction, selective

Reduction selective

Reductions, selectivity

© 2024 chempedia.info