Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Domino-hydroformylation-reduction

This chapter aims to provide an overview of the current state of the art in homogeneous catalytic hydrogenation of C=0 and C=N bonds. Diastereoselec-tive or enantioselective processes are discussed elsewhere. The chapter is divided into sections detailing the hydrogenation of aldehydes, the hydrogenation of ketones, domino-hydroformylation-reduction, reductive amination, domino hydroformylation-reductive amination, and ester, acid and anhydride hydrogenation. [Pg.413]

Hydroaminomethylation of Alkenes (Domino Hydroformylation-Reductive Ami nation) 439... [Pg.439]

Given the previous discussion on reductive amination, it is surprising that the potentially more complicated domino hydroformylation-reductive amination reactions have been more thoroughly developed. The first example of hydroaminomethylation was reported as early as 1943 [83]. The most synthetically useful procedures utilize rhodium [84-87], ruthenium [88], or dual-metal (Rh/Ir) catalysts [87, 89, 90]. This area was reviewed extensively by one of the leading research groups in 1999 [91], and so is only briefly outlined here as the second step in the domino process is reductive amination of aldehydes. Eilbrachfs group have shown that linear selective hydroaminomethylation of 1,2-disubstituted alkenes... [Pg.439]

The hydroformylation reaction strategy has recently been extended, in a novel way, to the manufacture of primary amines by hydroaminomethylation of olefins with ammonia in a two-phase system. Thus, 1-pentene was reacted with ammonia here hydroformylation to an aldehyde, with CO and H2, with subsequent reductive amination occurs in a domino reaction. The catalyst was Rh/Ir/TPPS (Zimmermann et al., 1999). [Pg.141]

More recently, during research aimed at supporting the highly linear selective hydroformylation catalyst [Rh(H)(Xantphos)(CO)2] onto a silica support, the presence of a cationic rhodium precursor in equilibrium with the desired rhodium hydride hydroformylation catalyst was observed. The presence of this complex gave the resulting catalyst considerable hydrogenation activity such that high yields of linear nonanol could be obtained from oct-1-ene by domino hy-droformylation-reduction reaction [75]. [Pg.437]

In conclusion, the applicability of the transition metal catalyzed hydroformylation of easily accessible functionalized or non-functionalized unsaturated compounds is expanded by its implementation in reaction sequences, tandem reactions or domino reactions. The hydroformylation can be combined with simple functional group transformations, such as reduction or isomerization, or with C,0-, C,N- and, most importantly, C,C-bond forming reactions. It can be expected that more interesting examples and applications will be presented in the future. [Pg.102]

Aliphatic amines are amongst the most important bulk and fine chemicals in the chemical and pharmaceutical industry [13]. Hydroaminomethylation of alkenes to amines presents an atom-economic, efficient and elegant synthetic pathway towards this class of compounds. In hydroaminomethylation a reaction sequence of hydroformylation of an alkene to an aldehyde with subsequent reductive amina-tion proceeds in a domino reaction (see Eq. 4) [14]. Recently, the highly selective hydroamination of alkenes with ammonia to form linear primary and secondary aliphatic amines with a new Rh/Ir catalytic system (] Rh(cod)Cl 2], ] Ir(cod)Cl 2], aqueous TPPTS solution) has been described (see Scheme 2) [15]. The method is of particular importance for the production of industrially relevant, low molecular weight amines. [Pg.630]

Tandem or domino reactions using hydroformylation as the first step allow the immediate transformation of the formed aldehydes into other valuable chemical compounds (see Chapter 5) [41]. As discussed previously, the hydrogenation of olefinic substrates or product aldehydes is a commonly observed side reaction in the hydroformylation with Ru complexes. On the other hand, the reduction of the aldehydes can be desired. [Pg.44]

The bicyclization commences with the hydroformylation of an appropriate N-substituted allyl amide, producing the linear aldehyde as the main product. The compound undergoes spontaneous intramolecular cyclization. The final product of this domino reaction is formed by the reaction with the solvent (AcOH). Subsequent oxidation of the acylic keto group to the corresponding ester and reduction with LiAlH produced the targeted racemic natural compound with 33% overall yield over four steps. [Pg.320]


See other pages where Domino-hydroformylation-reduction is mentioned: [Pg.436]    [Pg.439]    [Pg.1583]    [Pg.1584]    [Pg.221]    [Pg.221]    [Pg.221]    [Pg.436]    [Pg.439]    [Pg.1583]    [Pg.1584]    [Pg.221]    [Pg.221]    [Pg.221]    [Pg.185]    [Pg.87]    [Pg.75]    [Pg.91]    [Pg.66]    [Pg.82]    [Pg.277]   
See also in sourсe #XX -- [ Pg.436 ]




SEARCH



Reduction hydroformylation

© 2024 chempedia.info