Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction solubility

The solubility and the hydrolysis constants enable the concentration of iron that will be in equilibrium with an iron oxide to be calculated. This value may be underestimated if solubility is enhanced by other processes such as complexation and reduction. Solubility is also influenced by ionic strength, temperature, particle size and by crystal defects in the oxide. In alkaline media, the solubility of Fe oxides increases with rising temperature, whereas in acidic media, the reverse occurs. Blesa et al., (1994) calculated log Kso values for Fe oxides over the temperature range 25-300 °C from the free energies of formation for hematite, log iCso fell from 0.44 at 25 °C to -10.62 at300°C. [Pg.208]

Figure 3.14 E-pH diagram for water system with commonly used oxidants and reductants. Soluble species and most solids are hydrated. No agents producing complexes or insoluble compounds are present other than HOH and OH . Figure 3.14 E-pH diagram for water system with commonly used oxidants and reductants. Soluble species and most solids are hydrated. No agents producing complexes or insoluble compounds are present other than HOH and OH .
The cathodic reaction during corrosion of iron in sea water is oxygen reduction. Solubility of 02 from the air in sea water is 0.189 mol m 3 and the diffusion coefficient of 02 is 2.75 x 10 9 m2 s 1. The diffusion layer thickness in an unstirred solution is about 0.5 mm. (a) Estimate the corrosion current density of iron in sea water, (b) If iron is connected to the negative pole of an external... [Pg.264]

Arsenic in soilds has been fractionated by Jackson s T28) procedure for soil phosphorus (15. 27). In this laboratory, a modification of Jackson s procedure is being used on sediment solids. A series of 1 molar solutions of NH4CI, NH4OH, acid ammonium oxalate (29) and HCl are used in sequence. The chloride fraction, or exchangeable fraction, contains weakly adsorbed, coulombically bound arsenic. The hydroxide fraction, contains iron and aluminum arsenate precipitates and surface precipitates (i.e. adsorbed arsenic species having both chemical and coulombic bonding to oxide surfaces). The oxalate, or reductant soluble fraction, contains arsenic occluded in amorphous weathering products. The acid, or calcium, fraction contains arseno-apatites. [Pg.714]

The nonlabile fraction of inorganic phosphorus not available to plants is sometimes divided into the occluded and reductant soluble forms. Occluded phosphorus consists of aluminum- and/or iron-bonded phosphates surrounded by an inert coat of another material such as oxides or hydrous oxides of iron or aluminum. Reductant soluble forms are covered by a coat that may be partially or totally dissolved under anaerobic conditions (Uehara and Gillman, 1981). The opportunities for occlusions to occur increase dramatically with soil age (Walker and Syers, 1976). This is because substantial amounts of Fe and Al oxides tend to be present only in heavily weathered soils in which the secondary silicate minerals have already dissolved (Fox et al., 1991). Data from tropical forest chronosequence studies in Hawaii are more or less in accordance with this view the fraction of P present in the occluded form increases with soil age (Crews et al, 1995). Nevertheless, that study also showed high amounts of nonoc-cluded (i.e., labile and accessible) inorganic phosphorus to be present, even in forests growing on the oldest soils. [Pg.97]

HSCH -CHNHj-COjH. Cysteine is a reduction product of cystine. It is the first step in the breakdown of cystine in the body, one molecule of cystine splitting to give two molecules of cysteine. Cysteine is soluble in water but the solution is unstable, and is reoxidized to cystine. [Pg.124]

Colourless crystals m.p. 50 C, b.p. 301 C. Basic and forms sparingly soluble salts with mineral acids. Prepared by the reduction of 1-nitronaphthalene with iron and a trace of hydrochloric acid or by the action of ammonia upon l-naphlhol at a high temperature and pressure. [Pg.270]

CfiHsNjOs. Red needles m.p. 168-169°C. Soluble in dilute acids and alkalis. Prepared by reduction of picric acid with sodium hydrogen sulphide, ft is used for the preparation of azodyes, which can be after-chromed by treatment with metallic salts owing to the presence of a hydroxyl group ortho to the amino-group. [Pg.313]

Originally, general methods of separation were based on small differences in the solubilities of their salts, for examples the nitrates, and a laborious series of fractional crystallisations had to be carried out to obtain the pure salts. In a few cases, individual lanthanides could be separated because they yielded oxidation states other than three. Thus the commonest lanthanide, cerium, exhibits oxidation states of h-3 and -t-4 hence oxidation of a mixture of lanthanide salts in alkaline solution with chlorine yields the soluble chlorates(I) of all the -1-3 lanthanides (which are not oxidised) but gives a precipitate of cerium(IV) hydroxide, Ce(OH)4, since this is too weak a base to form a chlorate(I). In some cases also, preferential reduction to the metal by sodium amalgam could be used to separate out individual lanthanides. [Pg.441]

Acetophenone similarly gives an oxime, CHjCCgHjlCtNOH, of m.p. 59° owing to its lower m.p. and its greater solubility in most liquids, it is not as suitable as the phenylhydrazone for characterising the ketone. Its chief use is for the preparation of 1-phenyl-ethylamine, CHjCCgHslCHNHj, which can be readily obtained by the reduction of the oxime or by the Leuckart reaction (p. 223), and which can then be resolved by d-tartaric acid and /-malic acid into optically active forms. The optically active amine is frequently used in turn for the resolution of racemic acids. [Pg.258]

Reduction to aminophenol. Reduce about 0 5 g. of o-nitrophenol with cone. HCl and tin as described on p. 385. After a few minutes the yellow molten o-nitrophenol disappears completely, the solution becoming homogeneous and colourless due to the formation of 0-aminophenol (which is soluble in HCl). Cool and add 30% aqueous NaOH solution note that a white precipitate is first formed and then redissolvcs in an excess of NaOH, and that the solution does not develop an orange coloration, indicating that the nitro-group has been reduced. [Pg.386]

The imides, primaiy and secondary nitro compounds, oximes and sulphon amides of Solubility Group III are weakly acidic nitrogen compounds they cannot be titrated satisfactorily with a standard alkaU nor do they exhibit the reactions characteristic of phenols. The neutral nitrogen compounds of Solubility Group VII include tertiary nitro compounds amides (simple and substituted) derivatives of aldehydes and ketones (hydrazones, semlcarb-azones, ete.) nitriles nitroso, azo, hydrazo and other Intermediate reduction products of aromatic nitro compounds. All the above nitrogen compounds, and also the sulphonamides of Solubility Group VII, respond, with few exceptions, to the same classification reactions (reduction and hydrolysis) and hence will be considered together. [Pg.1074]

Reduction of a nitro compound to a primary amine. In a 50 ml. round-bottomed or conical flask fitted with a reflux condenser, place 1 g. of the nitro compound and 2 g. of granulated tin. Measure out 10 ml. of concentrated hydrochloric acid and add it in three equal portions to the mixtiue shake thoroughly after each addition. When the vigorous reaction subsides, heat under reflux on a water bath until the nitro compound has completely reacted (20-30 minutes). Shake the reaction mixture from time to time if the nitro compound appears to be very insoluble, add 5 ml. of alcohol. Cool the reaction mixture, and add 20-40 per cent, sodium hydroxide solution imtil the precipitate of tin hydroxide dissolves. Extract the resulting amine from the cooled solution with ether, and remove the ether by distillation. Examine the residue with regard to its solubility in 5 per cent, hydrochloric acid and its reaction with acetyl chloride or benzene-sulphonyl chloride. [Pg.1076]

Reduction of a nitrosamine to a secondary amine. Proceed as for a nitro compound. Determine the solubility of the residue after evaporation of the ether and also its behaviour towards benzenesulphonyl (or p-toluenesulphonyl) chloride. [Pg.1076]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]


See other pages where Reduction solubility is mentioned: [Pg.239]    [Pg.146]    [Pg.336]    [Pg.239]    [Pg.146]    [Pg.336]    [Pg.21]    [Pg.28]    [Pg.30]    [Pg.222]    [Pg.275]    [Pg.331]    [Pg.351]    [Pg.400]    [Pg.401]    [Pg.417]    [Pg.418]    [Pg.376]    [Pg.211]    [Pg.510]    [Pg.568]    [Pg.878]    [Pg.889]    [Pg.168]    [Pg.428]    [Pg.1169]    [Pg.343]    [Pg.36]    [Pg.131]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Electrodes with soluble reductants

Electrodes, oxidation-reduction solubility method

Oxidation-reduction solubility

Reaction thermodynamics with soluble reductants

Reductants soluble, electrode reaction

Reduction as the Basis for Enhanced Solubility

Reduction water-soluble azides

Sodium nitrate, reduction solubility

Water-solubility, reduction

Water-soluble compounds, reduction

© 2024 chempedia.info