Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction dithiane

Intermediate 10 must now be molded into a form suitable for coupling with the anion derived from dithiane 9. To this end, a che-moselective reduction of the benzyl ester grouping in 10 with excess sodium borohydride in methanol takes place smoothly and provides primary alcohol 14. Treatment of 14 with methanesulfonyl chloride and triethylamine affords a primary mesylate which is subsequently converted into iodide 15 with sodium iodide in acetone. Exposure of 15 to tert-butyldimethylsilyl chloride and triethylamine accomplishes protection of the /Mactam nitrogen and leads to the formation of 8. Starting from L-aspartic acid (12), the overall yield of 8 is approximately 50%, and it is noteworthy that this reaction sequence can be performed on a molar scale. [Pg.253]

Similarly, in another example, alkylation of 111 with diepoxide (—)-115 (1 equiv.) in the presence of HMPA (1.3 equiv.) furnished diol (+)-117. Protection of (+)-117 to form the acetonide, removal of the silyl protecting groups (TBAF), and hydrolysis of the dithiane with Hg(Cl04)2 provided the diketone (+)-118. Hydroxy-directed syn-reduction of both carbonyl groups with NaBI U in the presence of Et2BOMe, and triacetonide formation, followed by hydrogenolysis and monosilylation, afforded the desired Schreiber subtarget (+)-119, which was employed in the synthesis of (+)-mycoticins A and B (Scheme 8.31) [56b]. [Pg.293]

Halogenation of 106 with triphenylphosphine, iodine, and imidazole provided the iodo derivative 109. On treatment with lithium aluminum hydride, 109 was converted into two endocyclic alkenes, 110 and di-O-isopro-pylidenecyclohexanetetrol, in the ratio of 2 1. Oxidation of 110 with dimethyl sulfoxide - oxalyl chloride afforded the enone 111.1,4-Addition of ethyl 2-lithio-l,3-dithiane-2-carboxylate provided compound 112. Reduction of 112 with lithium aluminum hydride, and shortening of the side-chain, gave compound 113, which was converted into 114 by deprotection. ... [Pg.40]

The formation of S-oxides has also been observed when oxidizing a variety of 5-substituted 2-tert-butyl-l,3-dithianes in wet acetonitrile. In an undivided cell, 4-substituted 1,2-dithiolane-l-oxides were oblained (Scheme 25) [113]. A coupled cathodic process, in this case, was the reduction of protons formed in the anodic reaction. [Pg.248]

The kinetics of the reduction of 1,2-dithiane with triphenylphosphine was studied in aqueous ethanol at various temperatures by UV spectroscopy <1991PS(60)215>. First-order kinetics was clearly observed and the reaction rate was found to depend strongly on the solvent polarity. [Pg.705]

Oxygen at the heterocyclic sulfur atom has been functionalized in two ways (1) by a TMSOTf-catalyzed Pummerer reaction in the presence of a silyl enol ether (Scheme 95) <1998TL9131> or (2) by reductive removal of the oxygen using Ac20/Zn/cat. 4-dimethylaminopyridine (DMAP) <1996SL885>. The formation of 1,3-dithiane from 1,3-dithiane 1-oxide proceeds efficiently in 95% yield (Equation 70). [Pg.820]

Reduction of N-nitroso compounds 0-97 Reaction between dithiane salts and... [Pg.1288]

An efficient synthesis of ( )-quebrachamine is based on the construction of a suitable precursor via ring cleavage of an a-diketone monothioketal (810) (80JCS(P1)457). This monothioketal, available from 4-ethoxycarbonylcyclohexanone ethylene ketal, was fragmented to the dithianyl half ester (811) with sodium hydride in the presence of water. Reaction of (811) with tryptamine and DCC provided an amide which was converted to the stereoisomeric lactams (812) on hydrolysis of the dithiane function. Reduction of either the a- or /3-ethyl isomer with lithium aluminum hydride followed by conversion of the derived amino alcohol to its mesylate produced the amorphous quaternary salt (813). On reduction with sodium in liquid ammonia, the isomeric salts provided ( )-quebrachamine (814 Scheme 190). [Pg.490]

Dithioacetals (see also dithianes and dithiolanes) alkylation of 98 as acyl anion equivalents 75 carbanions of 87,97-102 cleavage of 14-18,98,102 desulfurization of 78 metal-catalysed coupling 127 reaction with Grignard reagents 127 reductive lithiation of 89 synthesis of 12-19,97-102 Dithioacids synthesis of 40... [Pg.107]


See other pages where Reduction dithiane is mentioned: [Pg.177]    [Pg.296]    [Pg.106]    [Pg.702]    [Pg.279]    [Pg.1647]    [Pg.23]    [Pg.241]    [Pg.192]    [Pg.115]    [Pg.97]    [Pg.187]    [Pg.59]    [Pg.725]    [Pg.62]    [Pg.133]    [Pg.143]    [Pg.1272]    [Pg.329]    [Pg.187]    [Pg.411]    [Pg.12]    [Pg.909]    [Pg.270]    [Pg.336]    [Pg.331]    [Pg.290]    [Pg.21]    [Pg.220]    [Pg.386]    [Pg.96]    [Pg.62]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



1,3-Dithian

1,3-dithiane

1.3- Dithianes reductive desulfurization

Dithianes reduction with Raney nickel

Dithians

Reduction reactions dithianes

© 2024 chempedia.info