Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox reaction introduced

Of course, redox reactions do not occur in isolation but are coupled through complexation reactions to other species. For example, Eq. 2.30 could include terms for nitrate and amine complexes, in addition to those for free nitrate, nitrite, and ammonium ions, if a typical soil solution were under consideration. The calculation of nitrogen speciation then would proceed just as described above. Indeed, redox reactions introduce no new mathematical elements into a speciation computation, any more than would the consideration of, for example, C02 reactions. The only new item brought in is an additional variable, the pE value, which, like the partial pressure of C02(g), must be specified in order to solve mole balance equations for distribution coefficients. [Pg.55]

Only one method for balancing redox reactions, the half-equation method introduced in Chapter 4. [Pg.722]

When we mix two solutions the result is often simply a new solution that contains both solutes. However, in some cases the solutes can react with each other. For instance, when we mix a colorless aqueous solution of silver nitrate with a clear yellow aqueous solution of potassium chromate, a red solid forms, indicating that a chemical reaction has occurred (Fig. 1.1). This section and the next two introduce three of the main types of chemical reactions precipitation reactions, acid-base reactions, and redox reactions, all of which are discussed in more depth in later chapters. (The fourth type of reaction discussed in this text, Lewis acid-base reactions, is introduced in Section 10.2.) Because many chemical reactions take place in solution, particularly in water, in this section we begin by considering the nature of aqueous solutions. [Pg.90]

We begin with a review of redox reactions, which were introduced in Section K. In this chapter we take a closer look at them and see how they can be used to generate electricity, particularly in aqueous solution. [Pg.603]

The isomorphic substituted aluminum atom within the zeolite framework has a negative charge that is compensated by a counterion. When the counterion is a proton, a Bronsted acid site is created. Moreover, framework oxygen atoms can give rise to weak Lewis base activity. Noble metal ions can be introduced by ion exchanging the cations after synthesis. Incorporation of metals like Ti, V, Fe, and Cr in the framework can provide the zeolite with activity for redox reactions. [Pg.213]

We begin this chapter with a discussion of the principles of redox reactions, including redox stoichiometry. Then we introduce the principles of electrochemishy. Practical examples of redox chemistry, including corrosion, batteries, and metallurgy, appear throughout the chapter. [Pg.1351]

The use of tetraoctylammonium salt as phase transfer reagent has been introduced by Brust [199] for the preparation of gold colloids in the size domain of 1-3 nm. This one-step method consists of a two-phase reduction coupled with ion extraction and self-assembly using mono-layers of alkane thiols. The two-phase redox reaction controls the growth of the metallic nuclei via the simultaneous attachment of self-assembled thiol monolayers on the growing clusters. The overall reaction is summarized in Equation (5). [Pg.28]

The description of redox reactions may afresh be carried out by introducing oxidation and reduction as an electron-transfer process. For this purpose, a process involving burning of magnesium in oxygen is considered, the reaction being written chemically as ... [Pg.624]

The preceding section has introduced redox reactions as those involving transfer of electrons. It has particularly been noted that copper and zinc are in direct contact. So, the electron transfer occurs between the two entities over a distance of separation of the order of one or a few molecular diameters. Thus, the redox change is a chemical reaction wherein, as embodied in the description, oxidation and reduction always go side by side, or in other... [Pg.625]

Only transformations in the longest linear sequence (LLS) are considered. The term skeleton constructions refers to C-C and C-O bond formations (notwithstanding redox reactions) that directly introduce native structural features of the bryostatins without further modification. The term other functional group manipulations refers to steps that indirectly introduce native structural elements, the interconversion of functional groups (e.g., the introduction and removal of auxiliaries) and miscellaneous transformations that do not involve skeleton construction... [Pg.126]

In the literature the term soluble Prussian blue introduced by Keggin and Miles [5] to determine the KFeFe(CN)6 compound is still widely used. However, it is important to note, that the term soluble refers to the ease with which the potassium ion can be peptized rather than to the real solubility of Prussian blue. Indeed, it can be easily shown by means of cyclic voltammetry that the stability of Prussian blue films on electrode supports is nearly independent of their saturation by potassium cations. Moreover, Itaya and coworkers [9] have not found any appreciable amount of potassium ions in Prussian blue, which makes doubtful structures like KFeFe(CN)6. Thus, the above equation fully describes the Prussian blue/Prussian white redox reaction. [Pg.437]

The concept of reduction potential is introduced in Chapter 6. When the reduction potentials of two species differ by 0.1 V or more, the resulting redox reaction will proceed rapidly and stoichiometrically so that it may be used as the basis for a titrimetric procedure. The end point of a redox titration may be observed by following the potential of the titrand with an indicator electrode or with a visual indicator. In two special cases, the reagent (potassium permanganate and iodine) is self-indicating (vide infra). [Pg.200]

In this chapter we introduce and discuss a number of concepts that are commonly used in the electrochemical literature and in the remainder of this book. In particular we will illuminate the relation of electrochemical concepts to those used in related disciplines. Electrochemistry has much in common with surface science, which is the study of solid surfaces in contact with a gas phase or, more commonly, with ultra-high vacuum (uhv). A number of surface science techniques has been applied to electrochemical interfaces with great success. Conversely, surface scientists have become attracted to electrochemistry because the electrode charge (or equivalently the potential) is a useful variable which cannot be well controlled for surfaces in uhv. This has led to a laudable attempt to use similar terminologies for these two related sciences, and to introduce the concepts of the absolute scale of electrochemical potentials and the Fermi level of a redox reaction into electrochemistry. Unfortunately, there is some confusion of these terms in the literature, even though they are quite simple. [Pg.11]

In this chapter, you will be introduced to oxidation-reduction reactions, also called redox reactions. You will discover how to identify this type of reaction. You will also find out how to balance equations for a redox reaction. [Pg.464]

Summarizing, this example provides several take-home lessons complete sets of hypersurface calculations for main-frame models of compounds can be quite helpful in close correlation to experimental data. Obviously, both the radical cation ground state structure and the angular dependence of the coupling constants are correctly predicted. In return, by introducing experimental data into the established correlations, the structure of radical cations in solution may be cautiously approximated. Altogether, this example teaches another lesson on how drastic those structural changes may be, which accompany even one-electron redox reactions. [Pg.153]

The concept of molecular orbitals (MOs) helps to explain the electron structure of ion-radicals. When one electron abandons the highest occupied molecular orbital (HOMO), a cation radical is formed. HOMO is a bonding orbital. If one electron is introduced externally, it takes the lowest unoccupied molecular orbital (LUMO), and the molecule becomes an anion-radical. LUMO is an antibonding orbital. Depending on the HOMO or LUMO involved in the redox reaction, organic donors appear as n, a, or n species, whereas organic acceptors can be tt or a species. Sometimes, a combination of these functions takes place. [Pg.1]

The quantitative laws of electrochemistry were discovered by Michael Faraday of England. His 1834 paper on electrolysis introduced many of the terms that you have seen throughout this book, including ion, cation, anion, electrode, cathode, anode, and electrolyte. He found that the mass of a substance produced by a redox reaction at an electrode is proportional to the quantity of electrical charge that has passed through the electrochemical cell. For elements with different oxidation numbers, the same quantity of electricity produces fewer moles of the element with higher oxidation number. [Pg.125]

N is here the number of lattice defects (vacancies or interstitials) which are responsible for non-stoichiometry. AHfon is the variation of lattice enthalpy when one noninteracting lattice defect is introduced in the perfect lattice. Since two types of point-defects are always present (lattice defect and altervalent cations (electronic disorder)), the AHform takes into account not only the enthalpy change due to the process of introduction of the lattice defect in the lattice, but also that occurring in the Redox reaction creating the electronic disorder. [Pg.118]

Photoinduced electron transfer processes involving electron donor (D) and acceptor (A) components can be tuned via redox reactions. Namely, the excited-state properties of fluorophores can be manipulated by either oxidation of electron donors or reduction of electron acceptors. Also, the oxidized and the reduced species show different properties compared to the respective electron donors and acceptors. By making use of these properties of electron donors and acceptors, a number of molecular switches and logic gates have been described in recent years. In the following, we will introduce these redox-controlled molecular switches according to the redox centers. [Pg.448]

The essentials of quantum kinetics were in place by 1954, Weiss having added to the Gurney theory a comprehensive theory of redox reactions. By this date, tunneling, adiabatic and non-adiabatic electron transfer, the simplicity introduced by considering redox reactions between isotopes, the separate contribution from outer sphere and inner sphere, and in particular the equation for the reorganization energy involving and stat had all been published. [Pg.805]

We start with a simple reversible redox reaction for which we can directly measure the free energy of reaction, Ar<7, with a galvanic cell. This example helps us introduce the concept of using (standard) reduction potentials for evaluating the energetics (i.e., the free energies) of redox processes. Let us consider the reversible interconversion of 1,4-benzoquinone (BQ) and hydroquinone (HQ) (reaction 14-5 in Table 14.1). We perform this reaction at the surface of an inert electrode (e.g.,... [Pg.559]

Other applications of emfs include the prediction of thermodynamically possible redox reactions [e.g., will Sn4+oxidize Fe2 to Fe3+ ] and the stabilization of oxidation states through the formation of complexes. The former is a straightforward application of thermodynamics and will not be discussed further here. The second is of great importance. It was introduced in Chapter 11 and will be discussed further below. [Pg.307]

This and the next two sections introduce three of the main types of chemical reactions precipitation reactions, acid-base reactions, and redox reactions, all of which are discussed in more depth in later chapters. The fourth type of reactions discussed in this text, Lewis acid-base reactions, are introduced in Chapter 2. [Pg.110]


See other pages where Redox reaction introduced is mentioned: [Pg.129]    [Pg.224]    [Pg.129]    [Pg.224]    [Pg.38]    [Pg.207]    [Pg.293]    [Pg.513]    [Pg.631]    [Pg.405]    [Pg.205]    [Pg.110]    [Pg.254]    [Pg.267]    [Pg.267]    [Pg.98]    [Pg.693]    [Pg.142]    [Pg.250]    [Pg.259]    [Pg.87]    [Pg.50]    [Pg.108]    [Pg.1337]    [Pg.10]    [Pg.267]    [Pg.558]    [Pg.312]    [Pg.379]   


SEARCH



Introduced

© 2024 chempedia.info