Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox excited state

PBE dendrons bearing a focal bipyridine moiety have been demonstrated to coordinate to Ru + cations, exhibiting luminescence from the metal cation core by the excitation of the dendron subunits [28-30]. The terminal peripheral unit was examined (e.g., phenyl, naphthyl, 4-f-butylphenyl) to control the luminescence. The Ru +-cored dendrimer complexes are thought to be photo/redox-active, and photophysical properties, electrochemical behavior, and excited-state electron-transfer reactions are reported. [Pg.200]

FIG. 11 General mechanism for the heterogeneous photoreduction of a species Q located in the organic phase by the water-soluble sensitizer S. The electron-transfer step is in competition with the decay of the excited state, while a second competition involved the separation of the geminate ion-pair and back electron transfer. The latter process can be further affected by the presence of a redox couple able to regenerate the initial ground of the dye. This process is commonly referred to as supersensitization. (Reprinted with permission from Ref. 166. Copyright 1999 American Chemical Society.)... [Pg.212]

As mentioned earlier, a great deal of literature has dealt with the properties of heterogeneous liquid systems such as microemulsions, micelles, vesicles, and lipid bilayers in photosynthetic processes [114,115,119]. At externally polarizable ITIES, the control on the Galvani potential difference offers an extra variable, which allows tuning reaction paths and rates. For instance, the rather high interfacial reactivity of photoexcited porphyrin species has proved to be able to promote processes such as the one shown in Fig. 3(b). The inhibition of back ET upon addition of hexacyanoferrate in the photoreaction of Fig. 17 is an example of a photosynthetic reaction at polarizable ITIES [87,166]. At Galvani potential differences close to 0 V, a direct redox reaction involving an equimolar ratio of the hexacyanoferrate couple and TCNQ features an uphill ET of approximately 0.10 eV (see Fig. 4). However, the excited state of the porphyrin heterodimer can readily inject an electron into TCNQ and subsequently receive an electron from ferrocyanide. For illumination at 543 nm (2.3 eV), the overall photoprocess corresponds to a 4% conversion efficiency. [Pg.227]

The X-ray structure of zinc naphthalocyanate has been determined with Zn—N bond lengths of 1.983(4) A.829 Pentanuclear complexes with a zinc phthalocyanine core and four ruthenium subunits linked via a terpyridyl ligand demonstrate interaction between the photoactive and the redox active components of the molecule. The absorbance and fluorescence spectra showed considerable variation with the ruthenium subunits in place.830 Tetra-t-butylphthalocyaninato zinc coordinated by nitroxide radicals form excited-state phthalocyanine complexes and have been studied by time-resolved electron paramagnetic resonance.831... [Pg.1220]

The choice of new complexes was guided by some simple considerations. The overall eel efficiency of any compound is the product of the photoluminescence quantum yield and the efficiency of excited state formation. This latter parameter is difficult to evaluate. It may be very small depending on many factors. An irreversible decomposition of the primary redox pair can compete with back electron transfer. This back electron transfer could favor the formation of ground state products even if excited state formation is energy sufficient (13,14,38,39). Taking into account these possibilities we selected complexes which show an intense photoluminescence (0 > 0.01) in order to increase the probability for detection of eel. In addition, the choice of suitable complexes was also based on the expectation that reduction and oxidation would occur in an appropriate potential range. [Pg.160]

The sensitizers display a crucial role in harvesting of sunlight. To trap solar radiation efficiently in the visible and the near IR region of the solar spectrum requires engineering of sensitizers at a molecular level (see Section 9.16.3).26 The electrochemical and photophysical properties of the ground and the excited states of the sensitizer have a significant influence on the charge transfer (CT) dynamics at the semiconductor interface (see Section 9.16.4). The open-circuit potential of the cell depends on the redox couple, which shuttles between the sensitizer and the counter electrode (for details see Section 9.16.5). [Pg.721]

Figure 4 Operating principles and energy level diagram of a dye-sensitized solar cell. S/S+/S = Sensitizer in the ground, oxidized and excited state, respectively. R/R = redox mediator (I3 / I-). Figure 4 Operating principles and energy level diagram of a dye-sensitized solar cell. S/S+/S = Sensitizer in the ground, oxidized and excited state, respectively. R/R = redox mediator (I3 / I-).
The excited state redox potential of a sensitizer plays an important process. An approximate value of the excited state redox potential potentials of the ground state couples and the zero-zero excitation Equations (13) and (14). The zero-zero energy can be obtained from of the sensitizer 38 role in the electron transfer can be extracted from the energy (E0 0) according to the 77 K emission spectrum... [Pg.725]

Based on extensive screening of hundreds of ruthenium complexes, it was discovered that the sensitizer s excited state oxidation potential should be negative of at least —0.9 V vs. SCE, in order to inject electrons efficiently into the Ti02 conduction band. The ground state oxidation potential should be about 0.5 V vs. SCE, in order to be regenerated rapidly via electron donation from the electrolyte (iodide/triiodide redox system) or a hole conductor. A significant decrease in electron injection efficiencies will occur if the excited and ground state redox potentials are lower than these values. [Pg.728]

Figure 11 Illustration of the interfacial CT processes in a nanocrystalline dye-sensitized solar cell. S / S+/S represent the sensitizer in the ground, oxidized and excited state, respectively. Visible light absorption by the sensitizer (1) leads to an excited state, followed by electron injection (2) onto the conduction band of Ti02. The oxidized sensitizer (3) is reduced by the I-/I3 redox couple (4) The injected electrons into the conduction band may react either with the oxidized redox couple (5) or with an oxidized dye molecule (6). Figure 11 Illustration of the interfacial CT processes in a nanocrystalline dye-sensitized solar cell. S / S+/S represent the sensitizer in the ground, oxidized and excited state, respectively. Visible light absorption by the sensitizer (1) leads to an excited state, followed by electron injection (2) onto the conduction band of Ti02. The oxidized sensitizer (3) is reduced by the I-/I3 redox couple (4) The injected electrons into the conduction band may react either with the oxidized redox couple (5) or with an oxidized dye molecule (6).
Cyclic voltammetry is an excellent tool to explore electrochemical reactions and to extract thermodynamic as well as kinetic information. Cyclic voltammetric data of complexes in solution show waves corresponding to successive oxidation and reduction processes. In the localized orbital approximation of ruthenium(II) polypyridyl complexes, these processes are viewed as MC and LC, respectively. Electrochemical and luminescence data are useful for calculating excited state redox potentials of sensitizers, an important piece of information from the point of view of determining whether charge injection into Ti02 is favorable. [Pg.754]

The redox potential diagram in eq. 1 illustrates that the effect of optical excitation is to create an excited state which has enhanced properties both as an oxidant and reductant, compared to the ground state. The results of a number of experiments have illustrated that it is possible for the excited state to undergo either oxidative or reductive electron transfer quenching (2). An example of oxidative electron transfer quenching is shown in eq. 2 where the oxidant is the alkyl pyridinium ion, paraquat (3). [Pg.153]


See other pages where Redox excited state is mentioned: [Pg.50]    [Pg.50]    [Pg.2422]    [Pg.400]    [Pg.134]    [Pg.44]    [Pg.1068]    [Pg.1069]    [Pg.4]    [Pg.21]    [Pg.55]    [Pg.458]    [Pg.70]    [Pg.276]    [Pg.277]    [Pg.1068]    [Pg.1069]    [Pg.194]    [Pg.212]    [Pg.219]    [Pg.227]    [Pg.414]    [Pg.84]    [Pg.87]    [Pg.150]    [Pg.245]    [Pg.71]    [Pg.235]    [Pg.159]    [Pg.160]    [Pg.167]    [Pg.169]    [Pg.195]    [Pg.731]    [Pg.737]    [Pg.103]    [Pg.110]    [Pg.264]    [Pg.30]    [Pg.152]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 ]




SEARCH



Excited state energy and redox potentials

Excited state redox processes

Excited state redox properties

Excited states redox potential

Redox Properties of the Excited States

Redox properties excited electronic states

Redox state

Spectroscopic excited state energy from redox

Spectroscopic excited state energy from redox potentials

© 2024 chempedia.info