Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactors liquid solid

Nienow, A.W., 1985. The mixer as a reactor Liquid/solid systems. In Mixing in the process industries. Eds. N. Harnby, M.F. Edwards and A.W. Nienow, 1992, 2nd edition. Oxford Butterworth-Heinemann. [Pg.317]

Many configurations of laboratory reactors have been employed. Rase (Chemical Reactor Design for Proce.s.s Plants, Wiley, 1977) and Shah (Ga.s-Liquid-Solid Reactor Design, McGraw-Hill, 1979) each have about 25 sketches, and Shah s bibliography has 145 items classified into 22 categories of reactor types. Jankowski et al. (Chemlsche Tech-nik, 30, 441 46 [1978]) illustrate 25 different lands of gradientless laboratory reactors for use with solid catalysts. [Pg.707]

Shah, Ga.s-Liquid-Solid Reactor De.sign, McGraw-Hill, 1979, pp. 149-179. 145 references. [Pg.708]

In many important cases of reactions involving gas, hquid, and solid phases, the solid phase is a porous catalyst. It may be in a fixed bed or it may be suspended in the fluid mixture. In general, the reaction occurs either in the liquid phase or at the liquid/solid interface. In fixed-bed reactors the particles have diameters of about 3 mm (0.12 in) and occupy about 50 percent of the vessel volume. Diameters of suspended particles are hmited to O.I to 0.2 mm (0.004 to 0.008 in) minimum by requirements of filterability and occupy I to 10 percent of the volume in stirred vessels. [Pg.2118]

A hst of 74 GLS reacdions with hterature references has been compiled by Shah Gas-Liquid-Solid Reactions, McGraw-HiU, 1979), classified into groups where the solid is a reactant, or a catalyst, or inert. A hst of 75 reactions made by Ramachandran and Chaudhari (Three-Phase Chemical Reactors, Gordon and Breach, 1983) identifies reactor types, catalysts, temperature, and pressure. They classify the processes according to hydrogenation of fatty oils, hydrodesulfurization, Fischer-Tropsch reactions, and miscellaneous hydrogenations and oxidations. [Pg.2118]

The effect of physical processes on reactor performance is more complex than for two-phase systems because both gas-liquid and liquid-solid interphase transport effects may be coupled with the intrinsic rate. The most common types of three-phase reactors are the slurry and trickle-bed reactors. These have found wide applications in the petroleum industry. A slurry reactor is a multi-phase flow reactor in which the reactant gas is bubbled through a solution containing solid catalyst particles. The reactor may operate continuously as a steady flow system with respect to both gas and liquid phases. Alternatively, a fixed charge of liquid is initially added to the stirred vessel, and the gas is continuously added such that the reactor is batch with respect to the liquid phase. This method is used in some hydrogenation reactions such as hydrogenation of oils in a slurry of nickel catalyst particles. Figure 4-15 shows a slurry-type reactor used for polymerization of ethylene in a sluiTy of solid catalyst particles in a solvent of cyclohexane. [Pg.240]

Chemical reactions obey the rules of chemical kinetics (see Chapter 2) and chemical thermodynamics, if they occur slowly and do not exhibit a significant heat of reaction in the homogeneous system (microkinetics). Thermodynamics, as reviewed in Chapter 3, has an essential role in the scale-up of reactors. It shows the form that rate equations must take in the limiting case where a reaction has attained equilibrium. Consistency is required thermodynamically before a rate equation achieves success over tlie entire range of conversion. Generally, chemical reactions do not depend on the theory of similarity rules. However, most industrial reactions occur under heterogeneous systems (e.g., liquid/solid, gas/solid, liquid/gas, and liquid/liquid), thereby generating enormous heat of reaction. Therefore, mass and heat transfer processes (macrokinetics) that are scale-dependent often accompany the chemical reaction. The path of such chemical reactions will be... [Pg.1034]

Guichardon etal. (1994) studied the energy dissipation in liquid-solid suspensions and did not observe any effect of the particles on micromixing for solids concentrations up to 5 per cent. Precipitation experiments in research are often carried out at solids concentrations in the range from 0.1 to 5 per cent. Therefore, the stirred tank can then be modelled as a single-phase isothermal system, i.e. only the hydrodynamics of the reactor are simulated. At higher slurry densities, however, the interaction of the solids with the flow must be taken into account. [Pg.49]

Guichardon, P., Falk, L., Fournier, M.C. and Villermaux, J., 1994. Study of micromixing in a liquid-solid suspension in a stirred reactor. American Institute of Chemical Engineers Symposium Series, 299, 123-130. [Pg.308]

Mass transfer across the liquid-solid interface in mechanically agitated liquids containing suspended solid particles has been the subject of much research, and the data obtained for these systems are probably to some extent applicable to systems containing, in addition, a dispersed gas phase. Liquid-solid mass transfer in such systems has apparently not been studied separately. Recently published studies include papers by Calderbank and Jones (C3), Barker and Treybal (B5), Harriott (H4), and Marangozis and Johnson (M3, M4). Satterfield and Sherwood (S2) have reviewed this subject with specific reference to applications in slurry-reactor analysis and design. [Pg.122]

Liquid residence-time distributions in mechanically stirred gas-liquid-solid operations have apparently not been studied as such. It seems a safe assumption that these systems under normal operating conditions may be considered as perfectly mixed vessels. Van de Vusse (V3) have discussed some aspects of liquid flow in stirred slurry reactors. [Pg.123]

Johnson et al. (J4) investigated the hydrogenation of a-methylstyrene catalyzed by a palladium-alumina catalyst suspended in a stirred reactor. The experimental data have recently been reinterpreted in a paper by Polejes and Hougen (P4), in which the original treatment is extended to take account of variations in catalyst loading, variations in impeller type, and variations of gas-phase composition. Empirical correlations for liquid-side resistance to gas-liquid and liquid-solid mass transfer are presented. [Pg.123]

The expression gas-liquid fluidization, as defined in Section III,B,3, is used for operations in which momentum is transferred to suspended solid particles by cocurrent gas and liquid flow. It may be noted that the expression gas-liquid-solid fluidization has been used for bubble-column slurry reactors (K3) with zero net liquid flow (of the type described in Sections III,B,1 and 1II,V,C). The expression gas-liquid fluidization has also been used for dispersed gas-liquid systems with no solid particles present. [Pg.123]

A number of H EX reactors are presented in the literature, some of which have been designed for a specific chemistry. It is necessary to remember the necessary flexibihty and polyvalence which are required in fine chemicals or pharmaceutical industries. Nevertheless, owing to the low holdup and the rapidity of putting HEX reactors in operation, one can imagine types of H EX reactors devoted to a portfoho of reactions linked to the exothermicity, product characteristics (such as corrosion) or to the nature of the phases (hquid-hquid, gas-liquid, solid, etc.). [Pg.284]

Andersson, B. (2003) Important factors in bubble coalescence modeling in stirred tank reactors. 6th International Conference on Gas liquid and Gas-Liquid -Solid Reactor Engineering, 2003, Vancouver. [Pg.355]

Kreutzer, M.T. et al. (2005) Multiphase monolith reactors chemical reaction engineering of segmented flow in microchannels. 7th International Conference on Gas-Liquid and Gas-Liquid-Solid, 2005,... [Pg.356]

Advances in multiphase reactors for fuel industry are discussed in this work. Downer reactors have some advantages over riser reactors, but suffer from some serious shortcomings. The coupled reactors can fully utilize the advantages of the riser and the downer. For fuel industry that involves gas-liquid-solid system, slurry bed reactors especially airlift reactors are preferred due to their performance of excellent heat control and ease of seale up. For high-pressure processes, the spherical reactor is promising due to its special characteristics. [Pg.88]

Recent research development of hydrodynamics and heat and mass transfer in inverse and circulating three-phase fluidized beds for waste water treatment is summarized. The three-phase (gas-liquid-solid) fluidized bed can be utilized for catalytic and photo-catalytic gas-liquid reactions such as chemical, biochemical, biofilm and electrode reactions. For the more effective treatment of wastewater, recently, new processing modes such as the inverse and circulation fluidization have been developed and adopted to circumvent the conventional three-phase fluidized bed reactors [1-6]. [Pg.101]

When the product of a reaction is purified and isolated, some of it is inevitably lost during the collection process. Gases may escape while being pumped out of a reactor. Liquids adhere to glass surfaces, making it impossible to transfer every drop of a liquid product. Likewise, it is impossible to scrape every trace of a solid material from a reaction vessel. [Pg.212]

Column reactors for gas-liquid-solid reactions are essentially the same as those for gas-liquid reactions. The solid catalyst can be fixed or moving within the reaction zone. A reactor with both the gas and the liquid flowing upward and the solid circulating inside the reaction zone is called a slurry column reactor (Fig. 5.4-10). The catalyst is suspended by the momentum of the flowing gas. If the motion of the liquid is the driving force for solid movement, the reactor is called an ebullated- or fluidized-bed column reactor (Fig. 5.4-10). When a catalyst is deactivating relatively fast, part of it can be periodically withdrawn and a fresh portion introduced. [Pg.265]

Semibatch reactors are often used to mn highly exothermic reactions isothermally, to run gas-liquid(-solid) processes isobarically, and to prevent dangerous accumulation of some reactants in the reaction mixture. Contrary to batch of)eration, temperature and pressure in semibatch reactors can be varied independently. The liquid reaction mixture can be considered as ideally mixed, while it is assumed that the introduced gas flows up like a piston (certainly this is not entirely true). Kinetic modelling of semibatch experiments is as difficult as that of batch, non-isotherma experiments. [Pg.295]

The flow pattern of fluids in gas-liquid-solid (catalyst) reactors is often far from ideal. Special care must be taken to avoid by-passing of the catalyst particles near the reactor walls, where the packing density of the catalyst pellets is lower than in the centre of the bed. By-passing becomes negligible if the ratio of reactor to particles diameter is larger than 10 a ratio of 20 is recommended. Flow maldistributions might be serious in the case of shallow beds. Special devices must be used to equalize the velocity over the cross-section of the reactor before reactants are introduced onto the catalyst bed. [Pg.296]


See other pages where Reactors liquid solid is mentioned: [Pg.394]    [Pg.394]    [Pg.528]    [Pg.707]    [Pg.1321]    [Pg.1359]    [Pg.2119]    [Pg.2121]    [Pg.135]    [Pg.554]    [Pg.413]    [Pg.12]    [Pg.172]    [Pg.312]    [Pg.85]    [Pg.85]    [Pg.101]    [Pg.557]    [Pg.582]    [Pg.152]    [Pg.165]    [Pg.260]    [Pg.261]    [Pg.264]    [Pg.292]   


SEARCH



Liquid reactors

© 2024 chempedia.info