Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactive Dyes for Textile Fibres

The concept of linking dye molecules covalently to fibre molecules in order to produce colours with superior fastness to washing had [Pg.194]

Colour Chemistry, 2nd edition By Robert M Christie R M Christie 2015 [Pg.194]

1 Fibre-Reactive Groups Reacting by Nucleophilic Substitution [Pg.197]

The most important reactive dyes in commercial use for application to cellulosic fibres in which the fibre-reactive groups react by nucleophilic addition are the Remazol reactive dyes. These dyes, based on the vinylsulfone reactive group, were introduced by Hoechst soon after the launch of the Procion dyes based on the triazine system by The chemistry of the process in which vinylsulfone [Pg.203]


A. H. M. Renfrew, Reactive dyes for Textile Fibres the Chemistry of Activated n-bonds as Reactive Groups and Miscellaneous Topics, Society of Dyers and Colourists, Bradford, 1999. [Pg.199]

A H M Renfrew, Reactive dyes for textile fibres The chemistry of activated Tt-borvis as reactive groups (Bradford SDC, 1999). [Pg.441]

The traditional use of dyes is in the coloration of textiles, a topic covered in considerable depth in Chapters 7 and 8. Dyes are almost invariably applied to the textile materials from an aqueous medium, so that they are generally required to dissolve in water. Frequently, as is the case for example with acid dyes, direct dyes, cationic dyes and reactive dyes, they dissolve completely and very readily in water. This is not true, however, of every application class of textile dye. Disperse dyes for polyester fibres, for example, are only sparingly soluble in water and are applied as a fine aqueous dispersion. Vat dyes, an important application class of dyes for cellulosic fibres, are completely insoluble materials but they are converted by a chemical reduction process into a water-soluble form that may then be applied to the fibre. There is also a wide range of non-textile applications of dyes, many of which have emerged in recent years as a result of developments in the electronic and reprographic... [Pg.23]

In view of the immense commercial importance of phthalocyanines as pigments, it is perhaps surprising that only a few are of importance as textile dyes. This is primarily due to the size of the molecules they are too large to allow penetration into many fibres, especially the synthetic fibres polyester and polyacrylonitrile. An example of a phthalocyanine dye which may be used to dye cellulosic substrates such as cotton and paper is C. I. Direct Blue 86 (96), a disulfonated copper phthalocyanine. In addition, a few blue reactive dyes for cotton incorporate the copper phthalocyanine system as the chromophoric unit (Chapter 8). [Pg.97]

The split into the various textile dyestuff application areas has, over recent years, seen a shift towards the two main outlets of disperse dyes for polyester and reactive dyes for cellulosics (mainly cotton), at the expense of directs and vat dyes for cotton, cationic dyes for acrylics and acid dyes for polyamide. The latter fibre has shown a comeback in recent years with the popularity of microfibres in sports and leisure wear. The position in 1998, with disperse dyes dominating in value terms, was as shown in Table 2.6. [Pg.99]

In Chapters 3-6, the commercially important chemical classes of dyes and pigments are discussed in terms of their essential structural features and the principles of their synthesis. The reader will encounter further examples of these individual chemical classes of colorants throughout Chapters 7 10 which, as a complement to the content of the earlier chapters, deal with the chemistry of their application. Chapters 7, 8 and 10 are concerned essentially with the application of dyes, whereas Chapter 9 is devoted to pigments. The distinction between these two types of colorants has been made previously in Chapter 2. Dyes are used in the coloration of a wide range of substrates, including paper, leather and plastics, but by far their most important outlet is on textiles. Textile materials are used in a wide variety of products, including clothing of all types, curtains, upholstery and carpets. This chapter deals with the chemical principles of the main application classes of dyes that may be applied to textile fibres, except for reactive dyes, which are dealt with exclusively in Chapter 8. [Pg.118]


See other pages where Reactive Dyes for Textile Fibres is mentioned: [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.194]    [Pg.195]    [Pg.197]    [Pg.199]    [Pg.201]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.194]    [Pg.195]    [Pg.197]    [Pg.199]    [Pg.201]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.231]    [Pg.324]    [Pg.25]    [Pg.119]    [Pg.119]    [Pg.120]    [Pg.135]    [Pg.136]    [Pg.192]    [Pg.1]    [Pg.77]    [Pg.36]    [Pg.38]    [Pg.170]    [Pg.170]    [Pg.171]    [Pg.194]    [Pg.195]    [Pg.196]    [Pg.127]    [Pg.18]    [Pg.158]    [Pg.296]   


SEARCH



Reactive dyes

Textile dyes

Textile fibres

© 2024 chempedia.info