Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions with , biosynthesis

Figure 11.16 The biosynthesis of epinephrine from norepinephrine occurs by an Sjyj2 reaction with S-acfenosylmethionine. Figure 11.16 The biosynthesis of epinephrine from norepinephrine occurs by an Sjyj2 reaction with S-acfenosylmethionine.
In fatty-acid biosynthesis, a carboxylic acid is activated by reaction with ATP to give an acyl adenylate, which undergoes nucleophilic acyi substitution with the — SH group or coenzyme A. (ATP = adenosine triphosphate AMP = adenosine monophosphate.)... [Pg.801]

Step 1 of Figure 27.7 Claisen Condensation The first step in mevalonate biosynthesis is a Claisen condensation (Section 23.7) to yield acetoacetyl CoA, a reaction catalyzed by acetoacetyl-CoA acetyltransferase. An acetyl group is first bound to the enzyme by a nucleophilic acyl substitution reaction with a cysteine —SH group. Formation of an enolate ion from a second molecule of acetyl CoA, followed by Claisen condensation, then yields the product. [Pg.1072]

Adenosine triphosphate, coupled reactions and. 1128-1129 function of, 157, 1127-1128 reaction with glucose, 1129 structure of, 157, 1044 S-Adenosylmethionine, from methionine, 669 function of, 382-383 stereochemistry of, 315 structure of, 1045 Adipic acid, structure of, 753 ADP, sec Adenosine diphosphate Adrenaline, biosynthesis of, 382-383 molecular model of, 323 slructure of, 24... [Pg.1282]

Some sugar residues in bacterial polysaccharides are etherified with lactic acid. The biosynthesis of these involves C)-alkylation, by reaction with enol-pyruvate phosphate, to an enol ether (34) of pyruvic acid, followed by reduction to the (R) or (5) form of the lactic acid ether (35). The enol ether may also react in a different manner, giving a cyclic acetal (36) of pyruvic acid. [Pg.303]

Experiments have been carried out to mimic the reactions of model systems for coenzyme F430 that is involved in the terminal step in the biosynthesis of methane, and that is able to dechlorinate CCI4 successively to CHCI3 and CH2CI2 (Krone et al. 1989). Nickel(I) isobacteriochlorin anion was generated electrolytically and used to examine the reactions with alkyl halides in dimethylformamide (Helvenston and Castro 1992). The three classes of reaction were the same as those observed with Fe(II) deuteroporphyrin IX that have already been noted. [Pg.27]

The antibiotic activity of certain (3-lactams depends largely on their interaction with two different groups of bacterial enzymes. (3-Lactams, like the penicillins and cephalosporins, inhibit the DD-peptidases/transpeptidases that are responsible for the final step of bacterial cell wall biosynthesis.63 Unfortunately, they are themselves destroyed by the [3-lactamases,64 which thereby provide much of the resistance to these antibiotics. Class A, C, and D [3-lactamases and DD-peptidases all have a conserved serine residue in the active site whose hydroxyl group is the primary nucleophile that attacks the substrate carbonyl. Catalysis in both cases involves a double-displacement reaction with the transient formation of an acyl-enzyme intermediate. The major distinction between [3-lactamases and their evolutionary parents the DD-peptidase residues is the lifetime of the acyl-enzyme it is short in (3-lactamases and long in the DD-peptidases.65-67... [Pg.373]

The role of N-sulfonyloxy arylamines as ultimate carcinogens appears to be limited. For N-hydroxy-2-naphthylamine, conversion by rat hepatic sulfotransferase to a N-sulfonyloxy metabolite results primarily in decomposition to 2-amino-l-naphthol and 1-sulfonyloxy-2-naphthylamine which are also major urinary metabolites and reaction with added nucleophiles is very low, which suggests an overall detoxification process (9,17). However, for 4-aminoazobenzene and N-hydroxy-AAF, which are potent hepatocarcinogens in the newborn mouse, evidence has been presented that strongly implicates their N-sulfonyloxy arylamine esters as ultimate hepatocarcinogens in this species (10,104). This includes the inhibition of arylamine-DNA adduct formation and tumorigenesis by the sulfotransferase inhibitor pentachlorophenol, the reduced tumor incidence in brachymorphic mice that are deficient in PAPS biosynthesis (10,115), and the relatively low O-acetyltransferase activity of mouse liver for N-hydroxy-4-aminoazobenzene and N-OH-AF (7,114,115). [Pg.356]

Enzymatic catalysis of reactions. Important enzymes are located in membranes at the interface between the lipid and aqueous phases. This is where reactions with apolar substrates occur. Examples include lipid biosynthesis (see p. 170) and the metabolism of apolar xenobiotics (see p. 316). The most important reactions in energy conversion—i.e., oxidative phosphorylation (see... [Pg.216]

Many DOHs, such as L-daunosamine, L-epivancosamine or L-ristosamine, contain an amino group at C3, which is introduced by an aminotransferase. The substrate for this reaction is the 3-keto sugar intermediate that arises as a consequence of the action of a 2,3-dehydratase. This transaminahon reaction has been biochemically characterized in the biosynthesis of L-epivancosamine [10]. Using a coupled reaction with EvaB (2,3-dehydratase) and EvaC (aminotransferase), with pyridoxal-5-phosphate (PEP) as a coenzyme and L-glutamate as a cosubstrate, they were able to show conversion of TDP-4-keto-2,6-dideoxyglucose into thymidine-5 -diphospho-3-amino-2,3,6-trideoxy-D-threo-hexopyranos-4-ulose. [Pg.163]

It therefore appeared that a general mechanism for enzymatic esterification of phenolic acids with glucose was operative, whereas the reaction with other alcoholic moieties proceeded via carboxyl-activated acyl derivatives. [In this context it should be emphasized that glucose esters must not be confused with glucosides different enzymes are involved in the biosynthesis of these two types of phenolic glucose derivatives (36)]. [Pg.113]

Schroder, J., Plant polyketide synthases a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. [Pg.1059]


See other pages where Reactions with , biosynthesis is mentioned: [Pg.178]    [Pg.678]    [Pg.695]    [Pg.66]    [Pg.279]    [Pg.1077]    [Pg.456]    [Pg.95]    [Pg.835]    [Pg.901]    [Pg.1290]    [Pg.1291]    [Pg.427]    [Pg.181]    [Pg.190]    [Pg.199]    [Pg.511]    [Pg.74]    [Pg.274]    [Pg.238]    [Pg.39]    [Pg.382]    [Pg.508]    [Pg.363]    [Pg.29]    [Pg.168]    [Pg.295]    [Pg.535]    [Pg.114]    [Pg.264]    [Pg.126]    [Pg.66]    [Pg.3]    [Pg.1008]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Reaction biosynthesis

© 2024 chempedia.info