Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions of Peroxovanadates

Tracey, A.S. and J.S. Jaswal. 1993. Reactions of peroxovanadates with amino acids and related compounds in aqueous solution. Inorg. Chem. 32 4235 4243. [Pg.97]

This book does not follow a chronological sequence but rather builds up in a hierarchy of complexity. Some basic principles of 51V NMR spectroscopy are discussed this is followed by a description of the self-condensation reactions of vanadate itself. The reactions with simple monodentate ligands are then described, and this proceeds to more complicated systems such as diols, -hydroxy acids, amino acids, peptides, and so on. Aspects of this sequence are later revisited but with interest now directed toward the influence of ligand electronic properties on coordination and reactivity. The influences of ligands, particularly those of hydrogen peroxide and hydroxyl amine, on heteroligand reactivity are compared and contrasted. There is a brief discussion of the vanadium-dependent haloperoxidases and model systems. There is also some discussion of vanadium in the environment and of some technological applications. Because vanadium pollution is inextricably linked to vanadium(V) chemistry, some discussion of vanadium as a pollutant is provided. This book provides only a very brief discussion of vanadium oxidation states other than V(V) and also does not discuss vanadium redox activity, except in a peripheral manner where required. It does, however, briefly cover the catalytic reactions of peroxovanadates and haloperoxidases model compounds. [Pg.257]

The reactions of hydrogen peroxide with vanadate have been of interest for many years. Much of the early work was concerned with the function of peroxovanadates as oxygen transfer agents. Alkenes and similar compounds such as allyl alcohols can be hydroxylated or epoxidized. Even alkanes can be hydroxylated, whereas alcohols can be oxidized to aldehydes or ketones and thiols oxidized to sulphones or sulphoxides. Aromatic molecules, including benzene, can be hydroxylated. The rich chemistry associated with the peroxovanadates has, therefore, led to extensive studies of their reaction chemistry. To this end, x-ray diffraction studies have successfully provided details of a number of peroxovanadate structures. [Pg.81]

Olefins undergo a two-step oxidative process, with the first step leading to an epoxide that, in the presence of excess oxidant, subsequently is cleaved to afford aldehydes or ketones, dependent on the position of the olefinic bond. Oxidative reactions by peroxovanadates tend to be retarded by protic solvents such as water or methanol. For instance, oxidation of norbomene by picolinatooxomonoperoxo-vanadate in acetonitrile affords 22% of the product epoxide in 9 min. After 120 min in methanol solvent, only 1.8% yield was obtained. In dichloromethane, even cyclohexane is oxidized faster than this, giving 4% cyclohexanol and 9% cyclohexanone in 120 min, whereas benzene in acetonitrile yields 56% of phenol [23],... [Pg.114]

Studies of the oxidation of organic sulfides with amino acid-derived ligands in acetonitrile revealed very little difference between the mechanism of their oxidation and that of halides, except for one major exception. Despite the fact that acid conditions are still required for the catalytic cycle, hydroxide or an equivalent is not produced in the catalytic cycle, so no proton is consumed [48], As a consequence, there is no requirement for maintenance of acid levels during a catalyzed reaction. Peroxo complexes of vanadium are well known to be potent insulin-mimetic compounds [49,50], Their efficacy arises, at least in part, from an oxidative mechanism that enhances insulin receptor activity, and possibly the activity of other protein tyrosine kinases activity [51]. With peroxovanadates, this is an irreversible function. Apparently, there is no direct effect on the function of the kinase, but rather there is inhibition of protein tyrosine phosphatase activity. The phosphatase regulates kinase activity by dephosphorylating the kinase. Oxidation of an active site thiol in the phosphatase prevents this down-regulation of kinase activity. Presumably, this sulfide oxidation proceeds by the process outlined above. [Pg.116]


See other pages where Reactions of Peroxovanadates is mentioned: [Pg.99]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.99]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.82]    [Pg.111]    [Pg.123]    [Pg.183]    [Pg.186]    [Pg.5462]    [Pg.541]    [Pg.8]    [Pg.99]    [Pg.114]    [Pg.114]    [Pg.179]    [Pg.5463]    [Pg.5464]    [Pg.5463]   


SEARCH



Peroxovanadates

© 2024 chempedia.info