Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions important temperature

Hydrolysis reactions involving tetrahedral intermediates are subject to steric and electronic effects. Electron-withdrawing substituents faciUtate, but electron-donating and bulky substituents retard basic hydrolysis. Steric effects in acid-cataly2ed hydrolysis are similar to those in base-cataly2ed hydrolysis, but electronic effects are much less important in acid-cataly2ed reactions. Higher temperatures also accelerate the reaction. [Pg.388]

Temperature also affects production rates but, through its influence on the thermal expansion of water, it also induces changes in the depth of vertical mixing and resistance to wind-stirring processes. Reactions to temperature of other components of the food chain are also important in the regulation of phytoplankton biomass by consumers. Different phytoplankton species, with important morphological differences, are differentiated selectively by the interplay of these factors. " ... [Pg.32]

The enantioselectivity obtained in the hetero-Diels-Alder reaction (Scheme 12) was low (18% ee). This is, in part, due to the important temperature effect. For example, 50% ee was obtained in reactions carried out in homogeneous phase at - 60 °C and 95% ee in reactions at - 78 °C. However, at 0 °C the enantioselectivity dropped to 28% ee, a value closer to that obtained with the immobilized catalyst at the same temperature. Recycling was investigated and the solid was used four times with the same activity maintained. The 6b-Cu(OTf)2 catalyst proved to be less effective for this reaction and less stable in terms of recycling, a situation in agreement with the results obtained with exchanged catalysts [53]. [Pg.183]

Among the various technologies, HEX reactors play an important part in PI since many chemical reactions are temperature dependent The principle of the H EX reactor consists in combining a reactor with a H EX in only one unit. The following are the benefits of using HEX reactors with PI ... [Pg.262]

As Table 20 shows, the yields of the Rh(II)-promoted reaction are temperature-dependent. Furthermore, competitive experiments between pairs of alkanes revealed a marked dependence on the alkoxy group of the diazoester and on the perfluoroalkyl carboxylate part of the catalyst. The observed relative selectivities have been taken as evidence for the importance of lipophilic interactions between carbenoid and alkane. [Pg.198]

Figure 2.19 provides the thermodynamic equilibrium data for methane decomposition reaction. At temperatures above 800°C, molar fractions of hydrogen and carbon products approach their maximum equilibrium value. The effect of pressure on the molar fraction of H2 at different temperatures is shown in Figure 2.20. It is evident that the H2 production yield is favored by low pressure. The energy requirement per mole of hydrogen produced (37.8 kj/mol H2) is significantly less than that for the SMR reaction (68.7 kj/mol H2). Owing to a relatively low endothermicity of the process, <10% of the heat of methane combustion is needed to drive the process. In addition to hydrogen as a major product, the process produces a very important by-product clean carbon. Because no CO is formed in the reaction, there is no need for the WGS reaction and energy-intensive gas separation stages. Figure 2.19 provides the thermodynamic equilibrium data for methane decomposition reaction. At temperatures above 800°C, molar fractions of hydrogen and carbon products approach their maximum equilibrium value. The effect of pressure on the molar fraction of H2 at different temperatures is shown in Figure 2.20. It is evident that the H2 production yield is favored by low pressure. The energy requirement per mole of hydrogen produced (37.8 kj/mol H2) is significantly less than that for the SMR reaction (68.7 kj/mol H2). Owing to a relatively low endothermicity of the process, <10% of the heat of methane combustion is needed to drive the process. In addition to hydrogen as a major product, the process produces a very important by-product clean carbon. Because no CO is formed in the reaction, there is no need for the WGS reaction and energy-intensive gas separation stages.
Both temperature and pressure are important parameters/variables in NMR measurements of homogeneous hydrogenation catalysts. Usually, a certain hydrogen pressure is needed to form the active catalyst. The temperature controls the rate of reactions. Sometimes, temperatures above room temperature are needed for example, the reaction shown in Figure 11.3 occurs at a hydrogen pressure of 3 atmos and temperatures above 318 K. In other cases, intermediates can only be observed at temperatures below room temperature. Modern NMR instruments routinely allow measurements to be made in the range of, for example 170 to 410 K, but this range can easily be extended by the use of special NMR probes. [Pg.307]

Temperature plays an important contribution in kinetically controlled reactions. High temperature supplies enough energy to the system as the barrier leading to both diasteieoisomers can be surmounted, whereas a low temperature makes more probable only the surmount of the barrier corresponding to one of the diastereoisomers. [Pg.520]

One of the issues of the industrial process design is related to the heat released by this reaction. A temperature rise will decrease the acetic acid yield, not only because the equilibrium constant becomes lower (the reaction is exothermic see section 2.9) but also because it will reduce the enzyme activity. It is therefore important to keep the reaction temperature within a certain range, for instance, by using a heat exchanger. However, to design this device we need to know the reaction enthalpy under the experimental conditions, and this quantity cannot be easily found in the chemical literature. [Pg.9]

Temperature is one of the four or five most important parameters in industrial process control and in the chemical industry. Almost all chemical processes and reactions are temperature dependent, and not infrequently in the chemical plant temperature is the only indication of the progress of the process. Where the temperature is critical to the reaction, a considerable loss of product or efficiency may result from operation at incorrect temperatures. In some cases, loss of control of temperature can result in catastrophic plant failure with attendant damage and possible loss of life. [Pg.335]

Supported Au catalysts have been extensively studied because of their unique activities for the low temperature oxidation of CO and epoxidation of propylene (1-5). The activity and selectivity of Au catalysts have been found to be very sensitive to the methods of catalyst preparation (i.e., choice of precursors and support materials, impregnation versus precipitation, calcination temperature, and reduction conditions) as well as reaction conditions (temperature, reactant concentration, pressure). (6-8) High CO oxidation activity was observed on Au crystallites with 2-4 nm in diameter supported on oxides prepared from precipitation-deposition. (9) A number of studies have revealed that Au° and Au" play an important role in the low temperature CO oxidation. (3,10) While Au° is essential for the catalyst activity, the Au° alone is not active for the reaction. The mechanism of CO oxidation on supported Au continues to be a subject of extensive interest to the catalysis community. [Pg.147]

Homogenisation with respect to temperature This effectively means that if conditions are to be adiabatic (or nearly so), the outer layers of the mixture which are in contact with the vessel and the gas phase must be mixed with the bulk so effectively that no important temperature difference persists. If a reaction mixture is to be kept isothermal, the stirring must be even more effective, and there is a danger that the stirrer mechanism may dissipate so much energy that the heat generated in the solution becomes appreciable. [Pg.112]


See other pages where Reactions important temperature is mentioned: [Pg.321]    [Pg.877]    [Pg.501]    [Pg.710]    [Pg.32]    [Pg.251]    [Pg.415]    [Pg.5]    [Pg.323]    [Pg.337]    [Pg.221]    [Pg.308]    [Pg.159]    [Pg.152]    [Pg.270]    [Pg.56]    [Pg.186]    [Pg.1285]    [Pg.244]    [Pg.511]    [Pg.123]    [Pg.207]    [Pg.16]    [Pg.406]    [Pg.50]    [Pg.171]    [Pg.726]    [Pg.3]    [Pg.52]    [Pg.649]    [Pg.656]    [Pg.70]    [Pg.351]    [Pg.142]    [Pg.293]    [Pg.88]    [Pg.44]    [Pg.429]   
See also in sourсe #XX -- [ Pg.399 ]




SEARCH



Reactions important

© 2024 chempedia.info