Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction surface condensation

Alternatively, place the mixture of alcohol and red phosphorus in a 500 ml. three-necked flask fitted with a mechanical stirrer, dropping funnel and double surface condenser. Heat the phosphorus - alcohol mixture to about 250°, and add the bromine whilst stirring vigorously. Work up the reaction product as above. [Pg.283]

In a 1-litre three-necked flask, mounted on a steam bath and provided respectively with a separatory funnel, mechanical stirrer and double surface condenser, place 165 g. of bromoform (96 per cent.). Add 10 ml. of a solution of sodium arsenite made by dissolving 77 g. of A.R. arsenious oxide and 148 g. of A.R. sodium hydroxide in 475 ml. of water. Warm the mixture gently to start the reaction, and introduce the remainder of the sodium arsenite solution during 30-45 minutes at such a rate that the mixture refluxes gently. Subsequently heat the flask on the steam bath for 3-4 hours. Steam distil the reaction mixture (Fig. 11, 41, 1) and separate the lower layer of methylene bromide (79 g.). Extract the aqueous layer with about 100 ml. of ether a further 3 g. of methylene bromide is obtained. Dry with 3-4 g. of anhydrous calcium chloride, and distil from a Claisen flask with fractionating side arm. The methylene bromide boils constantly at 96-97° and is almost colourless. [Pg.300]

The complete assembly for carrying out the catalytic decomposition of acids into ketones is shown in Fig. Ill, 72, 1. The main part of the apparatus consists of a device for dropping the acid at constant rate into a combustion tube containing the catalyst (manganous oxide deposited upon pumice) and heated electrically to about 350° the reaction products are condensed by a double surface condenser and coUected in a flask (which may be cooled in ice, if necessary) a glass bubbler at the end of the apparatus indicates the rate of decomposition (evolution of carbon dioxide). The furnace may be a commercial cylindrical furnace, about 70 cm. in length, but it is excellent practice, and certainly very much cheaper, to construct it from simple materials. [Pg.338]

Place 56 g. of clean sodium, cut into small pieces, in a 500 ml. round-bottomed flask fitted with two 25 or 30 cm. double surface condensers in series. Weigh out 136 g. (72 ml.) of freshly distilled allyl iodide, b.p. 99-101° (Section 111,39). Introduce about one quarter of the aUyl iodide through the condensers. Warm the flask gently until the sodium commences to melt and immediately remove the flame. A vigorous reaction sets in and a liquid refluxes in the condensers. Add... [Pg.466]

Into a 1 litre round-bottomed flask, fitted with a double surface condenser, place 250 g. (277 ml.) of dry ethyl acetate (1) and 25 g. of clean sodium wire (2). Warm the flask on a water bath in order to start the reaction. Once the reaction commences, it proceeds vigorously and cooling of the flask may be necessary in order to avoid loss of ethyl... [Pg.477]

Into a 500 nil. round-bottomed flask, provided with a double surface condenser, place 50 g. (63 ml.) of pure, dry acetone, 50 g. (47 ml.) of ethyl cyanoacetate (Section 111,131) and 0 -5 g. of piperidine. Allow to stand for 60 hours and heat on a water bath for 2 hours. Treat the cold reaction mixture with 100 ml. of ether, wash with dilute hydrochloric acid, then with water, and dry over anhydrous sodium or magnesium sulphate. Distil under diminished pressure and collect the ethyl fsopropylidene cyanoacetate (ethyl a-cyano-pp-dimethylacrylate) at 114-116°/14mm.(l). The yield is 39 g. [Pg.495]

Place 32 g. of potassium ethyl xanthate (Section 111,166) and 50 ml. of absolute ethyl alcohol in a 500 ml. round-bottomed flask provided with a double surface condenser. Add 32 g. (16-5 ml.) of ethyl iodide. No reaction appears to take place in the cold. Heat on a water bath for 3 hours a reaction sets in within 15 minutes and the yellow reaction mixture becomes white owing to the separation of potassium iodide. Add about 150 ml. of water, separate the lower layer, and wash it with water. Dry it with anhydrous calcium chloride or anhydrous calcium sulphate and distil from a 50 ml. Claisen flask. Collect the ethyl S-ethyl xanthate at 196-198°. The yield is 23 g. [Pg.499]

In a 1 litre round-bottomed flask provided with an efficient double surface condenser, place 40 g. (39 ml.) of aniline, 50 g. (40 ml.) of carbon sulphide CAUTION inflammable) (1), and 50 g. (63-5 ml.) of absolute ethyl alcohol (2). Set up the apparatus in the fume cupboard or attach an absorption device to the top of the condenser (see Fig. 11, 8, 1) to absorb the hydrogen sulphide which is evolved. Heat upon an electrically-heated water bath or upon a steam bath for 8 hours or until the contents of the flask sohdify. When the reaction is complete, arrange the condenser for downward distillation (Fig. 11, 13, 3), and remove the excess of carbon disulphide and alcohol (CA UTION inflammable there must be no flame near the receiver). Shake the residue in the flask with excess of dilute hydrochloric acid (1 10) to remove any aniline present, filter at the pump, wash with water, and drain well. Dry in the steam oven. The yield of crude product, which is quite satisfactory for the preparation of phenyl iao-thiocyanute (Section IV.95), is 40-45 g. Recrystalhse the crude thiocarbanihde by dissolving it, under reflux, in boiling rectified spirit (filter through a hot water funnel if the solution is not clear), and add hot water until the solution just becomes cloudy and allow to cool. Pure sj/m.-diphenylthiourea separates in colourless needles, m.p, 154°,... [Pg.642]

Into a 1-litre beaker, provided with a mechanical stirrer, place 36 - 8 g. (36 ml.) of aniline, 50 g. of sodium bicarbonate and 350 ml. of water cool to 12-15° by the addition of a little crushed ice. Stir the mixture, and introduce 85 g. of powdered, resublimed iodine in portions of 5-6 g, at intervals of 2-3 minutes so that all the iodine is added during 30 minutes. Continue stirring for 20-30 minutes, by which time the colour of the free iodine in the solution has practically disappeared and the reaction is complete. Filter the crude p-iodoaniline with suction on a Buchner funnel, drain as completely as possible, and dry it in the air. Save the filtrate for the recovery of the iodine (1). Place the crude product in a 750 ml. round-bottomed flask fitted with a reflux double surface condenser add 325 ml. of light petroleum, b.p. 60-80°, and heat in a water bath maintained at 75-80°. Shake the flask frequently and after about 15 minutes, slowly decant the clear hot solution into a beaker set in a freezing mixture of ice and salt, and stir constantly. The p-iodoaniline crystallises almost immediately in almost colourless needles filter and dry the crystals in the air. Return the filtrate to the flask for use in a second extraction as before (2). The yield of p-iodoaniline, m.p. 62-63°, is 60 g. [Pg.647]


See other pages where Reaction surface condensation is mentioned: [Pg.236]    [Pg.237]    [Pg.238]    [Pg.240]    [Pg.250]    [Pg.252]    [Pg.257]    [Pg.304]    [Pg.307]    [Pg.314]    [Pg.323]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.358]    [Pg.431]    [Pg.465]    [Pg.481]    [Pg.535]    [Pg.606]    [Pg.671]    [Pg.814]    [Pg.859]    [Pg.875]    [Pg.963]    [Pg.988]    [Pg.236]    [Pg.238]    [Pg.240]    [Pg.250]    [Pg.252]    [Pg.257]    [Pg.304]    [Pg.307]    [Pg.314]    [Pg.323]    [Pg.348]    [Pg.350]    [Pg.352]   
See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Condensing surface

Surface condensers

© 2024 chempedia.info