Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction stoichiometry theoretical yield

When you use stoichiometry to calculate the amount of product formed in a reaction, you are calculating the theoretical yield of the reaction. The theoretical yield is the amount of product that forms when all the limiting reactant reacts to form the desired product It is the maximum obtainable yield, predicted by the balanced equation. In practice, the actual yield— the amount of product actually obtained from a reaction—is almost always less than the theoretical yield. Th e are many reasons for the difference between the actual and theoretical yields. For instance, some of the reactants may not react to form the desired product. They may react to form different products, in something known as side reactions, or they may simply remain unreacted. In addition, it may be difficult to isolate and recover all the product at the end of the reaction. Chemists often determine the efficiency of a chemical reaction by calculating its percent yield, which tells what percentage the actual yield is of the theoretical yield. It is calculated as follows ... [Pg.96]

The amount of a product obtained from a reaction is often reported as a yield. The amount of product predicted by stoichiometry is the theoretical yield, whereas the amount actually obtained is the actual yield. The percent yield is the percentage of the theoretical amount that is actually obtained ... [Pg.212]

Since the stoichiometry indicates that 1 mole CC12F2 is produced per moleCCl4, the use of 1.80 mole CC14 will produce 1.80 moleCCl2F2. This is the theoretical yield of the reaction. [Pg.73]

The amount of product actually formed in a reaction divided by the amount theoretically possible and multiplied by 100% is called the reaction s percent yield. For example, if a given reaction could provide 6.9 g of a product according to its stoichiometry, but actually provides only 4.7 g, then its percent yield is 4.7/6.9 X 100% = 68%. [Pg.86]

Chemists use stoichiometry to predict the amount of product that can be expected from a chemical reaction. The amount of product that is predicted by stoichiometry is called the theoretical yield. This predicted yield, however, is not always the same as the amount of product that is actually obtained from a chemical reaction. The amount of product that is obtained in an experiment is called the actual yield. [Pg.260]

In this section, you have learned how the amount of products formed by experiment relates to the theoretical yield predicted by stoichiometry. You have learned about many factors that affect actual yield, including the nature of the reaction, experimental design and execution, and the purity of the reactants. Usually, when you are performing an experiment in a laboratory, you want to maximize your percentage yield. To do this, you need to be careful not to contaminate your reactants or lose any products. Either might affect your actual yield. [Pg.270]

Theoretical yield. The yield predicted by stoichiometry, that is, the maximum weight of product obtainable from a reaction as indicated by the relation of combining weights in the equation for the reaction. [Pg.123]

The amount of product of a chemical reaction predicted by stoichiometry is called the theoretical yield. As shown earlier, if 3.75 g of nitrogen completely react, a theoretical yield of 4.55 g of ammonia would be produced. The actual yield of a chemical reaction is usually less than predicted. The collection techniques and apparatus used, time, and the skills of the chemist may affect the actual yield. [Pg.421]

Stoichiometry is the quantitative study of products and reactants in chemical reactions. Stoichiometric calculations are best done by expressing both the known and unknown quantities in terms of moles and then converting to other units if necessary. A limiting reagent is the reactant that is present in the smallest stoichiometric amount. It limits the amount of product that can be formed. The amount of product obtained in a reaction (the actual yield) may be less than the maximum possible amount (the theoretical yield). The ratio of the two is expressed as the percent yield. [Pg.98]

We can rate the efficiency of a reaction by calculating how much product would form under perfect or ideal conditions and then comparing the actual measured result with this ideal. The ideal amount of product is called the theoretical yield, and it is obtained by working a stoichiometry problem. Measuring the amount of product formed gives us the actual yield. From the ratio of the actual yield to the theoretical yield, we can calculate the percentage yield. [Pg.140]

We know the actual yield from the experiment. To calculate the percentage yield, first we need to find the theoretical yield. We can do that by calculating the maximum quantity of product that could form, based on the stoichiometry of the reaction. Once we have both the theoretical yield and the actual yield, finding the... [Pg.140]

The theoretical yield of product is the maximum amount of product that can be obtained by a reaction from given amounts of reactants. It is the amount that you calculate from the stoichiometry based on the limiting reactant. In Example 3.16, the theoretical yield of acetic acid is 27.3 g. In practice, the actual yield of a product may be much less for several possible reasons. First, some product may be lost during the process of separating it from the final reaction mixture. Second, there may be other,... [Pg.111]

In Example 10.5 you found that burning 66.0 grams of CyHig will produce 203 grams of CO2. This is the theoretical yield (theo), the amount of product formed from the complete conversion of the given amount of reactant to product. Theoretical yield is always a calculated quantity, calculated by the principles of stoichiometry. In actual practice, factors such as impure reactants, incomplete reactions, and side reactions cause the actual yield (act) to be lower than the theoretical yield. The actual yield is a measured quantity, determined by experiment or experience. [Pg.275]

The amounts of products calculated in the ideal stoichiometry problems in this chapter so far represent theoretical yields. The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant. In most chemical reactions, the amount of product obtained is less than the theoretical yield. There are many reasons for this result. Reactants may contain impurities or may form by-products in competing side reactions. Also, in many reactions, all reactants are not converted to products. As a result, less product is produced than ideal stoichiometric calculations predict. The measured amount of a product obtained from a reaction is called the actual yield of that product... [Pg.301]

Let s return to our pizza analogy to understand three more important concepts in reaction stoichiometry limiting reactant, theoretical yield, and percent yield. Recall our pizza recipe from Section 4.2 ... [Pg.145]

Other Practical Matters in Reaction Stoichiometry— Stoichiometric calculations sometimes involve additional factors, including the reaction s actual yield, the presence of by-products, and how the reaction or reactions proceed. For example, some reactions yield exactly the quantity of product calculated—the theoretical yield. When the actual yield equals the theoretical yield, the percent yield is 100%. In some reactions, the actual yield is less than the theoretical, in which case the percent yield is less than 100%. Lower yields may result from the formation of by-products, substances that replace some of the desired product because of reactions other than the one of interest, called side reactions. Some stoi-... [Pg.140]

Figure 2 presents the effect of the various volumetric ratios of water to rapeseed oil on the yield of fatty acids as prepared with both flow- and batch-type reaction systems at 270°C for 20 min. The volumetric ratios of 1/4 and 4 correspond to the molar ratios of 13 and 217, respectively. For the batch-type system, the hydrolysis rate of triglycerides seemed to be affected more by the amount of water, and a slightly better conversion was seen with the flow-type reaction system. Even though the volumetric ratio of 1/4 is equivalent to the molar ratio of 13 in water, which is theoretically higher than its stoichiometry of 3, the formation of fatty acids in both reaction systems was obviously low. In addition, it was found that at a volumetric ratio less than 2/3, it was difficult to separate hydrolysis products from the water portion that contained glycerol. On the other hand, the presence of water in fatty acids would have a negative effect on the methyl esterification reaction (15). [Pg.785]


See other pages where Reaction stoichiometry theoretical yield is mentioned: [Pg.271]    [Pg.148]    [Pg.969]    [Pg.223]    [Pg.304]    [Pg.1050]    [Pg.158]    [Pg.689]    [Pg.139]    [Pg.441]    [Pg.441]    [Pg.64]    [Pg.383]    [Pg.141]    [Pg.595]    [Pg.80]    [Pg.226]    [Pg.1147]    [Pg.229]    [Pg.173]    [Pg.337]    [Pg.186]    [Pg.337]    [Pg.373]    [Pg.504]    [Pg.6]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 ]

See also in sourсe #XX -- [ Pg.131 , Pg.132 ]




SEARCH



Reaction stoichiometry

Reaction yield

Yield theoretical

© 2024 chempedia.info