Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rate prediction transition state theory

Transition state theory is a method for predicting the rate of chemical reactions. Technically, what the theory provides is the rate of crossing of a barrier. If there is only one barrier between reactants and products, then transition state theory specifies how to compute the reaction rate constant. Transition state theory assumes the vahdity of only one condition, but a cardinal one, namely that on one side of the barrier, the states of the system are in equilibrium. If there is only one barrier between reactants and products, then it is the reactants that should be kept at equihbrium. The simplicity of transition state theory is lost if the reactants are state-selected. ... [Pg.202]

The case of m = Q corresponds to classical Arrhenius theory m = 1/2 is derived from the collision theory of bimolecular gas-phase reactions and m = corresponds to activated complex or transition state theory. None of these theories is sufficiently well developed to predict reaction rates from first principles, and it is practically impossible to choose between them based on experimental measurements. The relatively small variation in rate constant due to the pre-exponential temperature dependence T is overwhelmed by the exponential dependence exp(—Tarf/T). For many reactions, a plot of In(fe) versus will be approximately linear, and the slope of this line can be used to calculate E. Plots of rt(k/T" ) versus 7 for the same reactions will also be approximately linear as well, which shows the futility of determining m by this approach. [Pg.152]

Relationships between reaction rate and temperature can thus be used to detect non-classical behaviour in enzymes. Non-classical values of the preexponential factor ratio (H D i 1) and difference in apparent activation energy (>5.4kJmoRi) have been the criteria used to demonstrate hydrogen tunnelling in the enzymes mentioned above. A major prediction from this static barrier (transition state theory-like) plot is that tunnelling becomes more prominent as the apparent activation energy decreases. This holds for the enzymes listed above, but the correlation breaks down for enzymes... [Pg.33]

Give a concise description of transition state theory. How can the necessary parameters to make a quantitative prediction of reaction rate be obtained ... [Pg.404]

It can be difficult to estimate theoretically the bond lengths and vibrational frequencies for the activated complex and the energy barrier for its formation. It is of interest to assess how the uncertainty in these parameters affect the rate constant predicted from transition state theory (TST). For the exchange reaction... [Pg.442]

While the collision theory of reactions is intuitive, and the calculation of encounter rates is relatively straightforward, the calculation of the cross-sections, especially the steric requirements, from such a dynamic model is difficult. A very different and less detailed approach was begun in the 1930s that sidesteps some of the difficulties. Variously known as absolute rate theory, activated complex theory, and transition state theory (TST), this class of model ignores the rates at which molecules encounter each other, and instead lets thermodynamic/statistical considerations predict how many combinations of reactants are in the transition-state configuration under reaction conditions. [Pg.139]

Many of the 60 known reactions catalyzed by monoclonal antibodies involve kinetically favored reactions e.g., ester hydrolysis), but abzymes can also speed up kinetically disfavored reactions. Stewart and Benkovic apphed transition-state theory to analyze the scope and limitations of antibody catalysis quantitatively. They found the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This approach permitted them to rationalize product selectivity displayed in antibody catalysis of disfavored reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyze reactions. [Pg.115]

As seen in Tables 22—25, the Arrhenius preexponential factors Aa for the initiation step are very low, 10 in 7, 10 in 20, 10 " in 41 and 1in 44. These are very low values for bimolecular reactions for which values of about 10 ° are observed and also predicted by the Transition State Theory Thus step (a) belongs to a class of slow reactions , some of which might have ionic transition states . The activation entropies AS obtained from the Transition State Theory rate constant expression... [Pg.83]

Transition state theory can be used to test reaction dynamics on a molecular scale. Thus one can hypothesize a spatial configuration of the atoms in the transition state and from this calculate A S° the predicted rate constant can then be compared to that observed. If the agreement is not acceptable, the molecular configuration of the transition state can be adjusted until such agreement is obtained. Assuming this molecular configuration approximates the actual form of the intermediate in the reaction, one can learn something about the chemical dynamics of the reaction. [Pg.141]

Correlation of the effect of substituents on the rates of reactions with early transition states often is best accomplished in terms of perturbational molecular orbital theory, and polar effects can play a major role for such reactions [100, 101]. Essentially this theory states that energy differences between the highest occupied molecular orbital (HOMO) of one reactant and the lowest unoccupied molecular orbital (LUMO) of the other reactant are decisive in determining the reaction rate the smaller the difference in energy, the faster the predicted rate of reaction [102,103]. Since the HOMO of a free radical is the SOMO, the energy difference between the SOMO and the alkene HOMO and/or LUMO is of considerable importance in determining the rates of radical additions to alkenes [84],... [Pg.115]

Over the entire range of pH and temperature studied there was little or no dependence of the rate on ionic strength, that is, no salt effect. This result is consistent with the simple mechanism in that the slow step does not involve two ions. With at least one neutral molecule in the slow step, transition state theory predicts that the rate of the reactions will be independent of ionic strength. [Pg.310]

The water-promoted hydrolyses of a bicyclic amide, l-azabicyclo[2.2.2]octan-2-one (87), and a planar analogue, l,4-dimethylpiperidin-2-one (88), were studied using density functional theory in conjunction with a continuum dielectric method to introduce bulk solvent effects. The aim of these studies was to reveal how the twisting of the C-N bond affects the neutral hydrolysis of amides. The results predict important rate accelerations of the neutral hydrolysis of amides when the C-N bond is highly twisted, the corresponding barrier relaxation depending on the specific reaction pathway and transition state involved.85... [Pg.72]

Corrections to transition-state theory due to quantum tunneling along the reaction coordinate give a thermal rate constant that is larger than the prediction obtained from classical transition-state theory. [Pg.139]


See other pages where Reaction rate prediction transition state theory is mentioned: [Pg.1137]    [Pg.481]    [Pg.830]    [Pg.883]    [Pg.514]    [Pg.387]    [Pg.208]    [Pg.33]    [Pg.225]    [Pg.421]    [Pg.438]    [Pg.218]    [Pg.233]    [Pg.92]    [Pg.73]    [Pg.241]    [Pg.186]    [Pg.42]    [Pg.685]    [Pg.90]    [Pg.62]    [Pg.943]    [Pg.255]    [Pg.580]    [Pg.411]    [Pg.71]    [Pg.366]    [Pg.301]    [Pg.112]    [Pg.110]    [Pg.140]    [Pg.12]    [Pg.84]    [Pg.259]    [Pg.62]   
See also in sourсe #XX -- [ Pg.166 ]

See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Predicting rate

Prediction rate

Predictive theory

Rate Theory

Rate transition state theory

Reaction prediction

Reaction rate theory

Reaction rates predicting

Reaction rates transition state

Transition rates

Transition state theory predictions

Transition state theory reaction

Transition state theory reaction rate

Transition states reactions

© 2024 chempedia.info