Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deposition reaction rate

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

The maximum surface carbon content is usually set by the gas composition via the equiUbtium constant. If the gas reaction kinetics deposit carbon at a rate which carmot be equaled by the diffusion of carbon into the steel, then the surface value may be less than the possible equiUbtium value. [Pg.214]

Decomposition of Ag20. Dubinin et al. [642] have shown that the induction period to Ag20 decomposition at 603 K is reduced and the initial reaction rate is increased by the deposition of a thin film of Ag (or of Ni) on the reactant surface. Close contact between reactant and additive must be established for the effective promotion of salt breakdown since no activating influence was detected during reactions of mechanical mixtures of Ag20 and Ag. [Pg.262]

As already shown in Figure 6.3b the system exhibits remarkable electrophilic promotional behaviour with p values up to 20.64 This is also shown in Fig. 8.60 which depicts a galvanostatic transient. Application of a negative current between the Pt catalyst-working electrode and the Au counter electrode causes a sharp increase in all reaction rates. In the new steady state of the catalyst (achieved within lhr of current application) the catalytic rate increase of C02 and N2 production is about 700%, while lesser enhancement (250-400%) is observed in the rates of CO and N20 production. The appearance of rate maxima immediately after current application can be attributed to the reaction of NO with previously deposited carbon.64... [Pg.413]

As shown above, a thermodynamic analysis indicates what to expect from the reactants as they reach the deposition surface at a given temperature. The question now is, how do these reactants reach that deposition surface In other words, what is the mass-transport mechanism The answer to this question is important since the phenomena involved determines the reaction rate and the design and optimization of the CVD reactor. [Pg.44]

Many semibatch reactions involve more than one phase and are thus classified as heterogeneous. Examples are aerobic fermentations, where oxygen is supplied continuously to a liquid substrate, and chemical vapor deposition reactors, where gaseous reactants are supplied continuously to a solid substrate. Typically, the overall reaction rate wiU be limited by the rate of interphase mass transfer. Such systems are treated using the methods of Chapters 10 and 11. Occasionally, the reaction will be kinetically limited so that the transferred component saturates the reaction phase. The system can then be treated as a batch reaction, with the concentration of the transferred component being dictated by its solubility. The early stages of a batch fermentation will behave in this fashion, but will shift to a mass transfer limitation as the cell mass and thus the oxygen demand increase. [Pg.65]

Table 1. Effect of FeO, deposition onto Au particles on reaction rate of CO oxidation. Table 1. Effect of FeO, deposition onto Au particles on reaction rate of CO oxidation.
Many scientists have investigated various reactions at solid electrodes and particles on which catalysts were deposited in order to promote the reaction rate. Concerning... [Pg.101]

The total wet deposition flux consists of 2 contributory factors. The first derives from the continuous transfer of Hg to cloud water, described by chemistry models. There are 2 limiting factors 1) the uptake of gas phase Hg(0), which is regulated by the Hemy s corrstant and 2) the subsequent oxidation of Hg(0) to Hg(ll), which is governed by reaction rate constants and the irritial concentratiorrs of the oxidant species. The total flirx depends on the hquid water content of the cloud and the percentage of the droplets in the cloud that reach the Earth s surface. [Pg.25]

The electrochemical mechanism was rejected by Salvago and Cavallotti [26] on the basis that it does not explain several features of electroless deposition of ferrous metals it does not account for the isotopic composition of the H2 gas evolved it does not explain the effect of the various solution components on reaction rate and it does not account for the homogeneous decomposition of very active solutions or the fact that they can give deposition on insulating surfaces. These authors put forward a chemical mechanism, involving various hydrolyzed nickel species, which they claim explains the observed behavior of the system ... [Pg.255]

To improve process conditions and to obtain higher reaction rate, the water/oil ratio was studied. The influence of the oil/water ratio on separation and on the separation cost was studied employing R. erythropolis KA2-5-1 (deposited as FERN P-16277). The use of an oil/water ratio within the range of (3 1) to (8 1) was found to be optimum and was patented [127],... [Pg.344]

In earlier work with pure metals, it was generally accepted that the area of films deposited at, say, 0°C was proportional to their weight (with the exception of group IB and low melting-point metals). Information was available on the surface areas of films of Ni, Pt, Pd, Rh, etc. (71), and hence absolute reaction rates could be calculated. It would be a considerable undertaking to establish similar data for alloy systems, bearing in mind that various compositions would have to be examined and also a method for preparing exact compositions would be required. However, for sintered alloy films, approximate methods can be proposed. [Pg.138]

Alternatively, it may be possible to demonstrate for the pure metals that the catalytic activity is independent of film weight in a certain weight range. For example, rates of ethylene oxidation were constant over pure palladium films, deposited and annealed at 400°C and weighing between 4 and 40 mg (73). Then, if electron micrographs show that the crystallite size is relatively independent of composition, a satisfactory comparison of catalytic activity can be made at the various alloy compositions. Finally, surface area measurements are less urgently needed when activity varies by orders of magnitude, or where the main interest lies outside the determination of absolute reaction rates. [Pg.139]

Thus far, these models cannot really be used, because no theory is able to yield the reaction rate in terms of physically measurable quantities. Because of this, the reaction term currently accounts for all interactions and effects that are not explicitly known. These more recent theories should therefore be viewed as an attempt to give understand the phenomena rather than predict or simulate it. However, it is evident from these studies that more physical information is needed before these models can realistically simulate the complete range of complicated behavior exhibited by real deposition systems. For instance, not only the average value of the zeta-potential of the interacting surfaces will have to be measured but also the distribution of the zeta-potential around the mean value. Particles approaching the collector surface or already on it, also interact specifically or hydrodynamically with the particles flowing in their vicinity [100, 101], In this case a many-body problem arises, whose numerical... [Pg.211]


See other pages where Deposition reaction rate is mentioned: [Pg.2696]    [Pg.43]    [Pg.368]    [Pg.383]    [Pg.106]    [Pg.331]    [Pg.470]    [Pg.53]    [Pg.99]    [Pg.484]    [Pg.214]    [Pg.428]    [Pg.543]    [Pg.185]    [Pg.218]    [Pg.541]    [Pg.116]    [Pg.121]    [Pg.153]    [Pg.263]    [Pg.277]    [Pg.162]    [Pg.162]    [Pg.520]    [Pg.179]    [Pg.228]    [Pg.392]    [Pg.90]    [Pg.156]    [Pg.161]    [Pg.115]    [Pg.75]    [Pg.149]    [Pg.194]    [Pg.103]    [Pg.226]    [Pg.216]   
See also in sourсe #XX -- [ Pg.271 , Pg.275 , Pg.744 , Pg.750 , Pg.803 ]




SEARCH



Physical vapor deposition reaction rate

Reaction deposition

© 2024 chempedia.info