Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rate constant effect

During the parameter estimation, it was noted that the model is relatively insensitive to changes in k, and therefore it should not be taken as a reliable prediction of the Diels-Alder reaction rate constant. Effectively, the rate R is very large compared with the rates of initiation and chain transfer, and therefore the DH ratio calculation could be simplified without significantly changing the model results ... [Pg.143]

The possibility of formation of corresponding liquid flows mixing fronts under fast chemical reaction proceeding and without it (see 1.3.1) determines the interest in investigation of reaction rate constant effect on conditions of quasi-plug-flow mode formation in turbulent flows (plan reaction front). Low-molecular chemical reactions of the second order proceeding with rate constants in the range of k = 10 +10 1/mole-sec were experimentally studied. [Pg.89]

Northrup S H and Hynes J T 1979 Short range caging effects for reactions in solution. I. Reaction rate constants and short range caging picture J. Chem. Phys. 71 871-83... [Pg.869]

As a reactant molecule from the fluid phase surrounding the particle enters the pore stmcture, it can either react on the surface or continue diffusing toward the center of the particle. A quantitative model of the process is developed by writing a differential equation for the conservation of mass of the reactant diffusing into the particle. At steady state, the rate of diffusion of the reactant into a shell of infinitesimal thickness minus the rate of diffusion out of the shell is equal to the rate of consumption of the reactant in the shell by chemical reaction. Solving the equation leads to a result that shows how the rate of the catalytic reaction is influenced by the interplay of the transport, which is characterized by the effective diffusion coefficient of the reactant in the pores, and the reaction, which is characterized by the first-order reaction rate constant. [Pg.171]

The result is shown in Figure 10, which is a plot of the dimensionless effectiveness factor as a function of the dimensionless Thiele modulus ( ), which is R.(k/Dwhere R is the radius of the catalyst particle and k is the reaction rate constant. The effectiveness factor is defined as the ratio of the rate of the reaction divided by the rate that would be observed in the absence of a mass transport influence. The effectiveness factor would be unity if the catalyst were nonporous. Therefore, the reaction rate is... [Pg.171]

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

FIGURE 16.11 Specific and general acid-base catalysis of simple reactions in solution may be distinguished by determining the dependence of observed reaction rate constants (/sobs) pH and buffer concentration, (a) In specific acid-base catalysis, or OH concentration affects the reaction rate, is pH-dependent, but buffers (which accept or donate H /OH ) have no effect, (b) In general acid-base catalysis, in which an ionizable buffer may donate or accept a proton in the transition state, is dependent on buffer concentration. [Pg.511]

Referring to Fig. 9, the effect of the shear is to catalyze the reaction, presumably through suppression of the interfacial barrier by stretching the flow. The latter is believed to reduce the diffusion path, promoting the reaction rate, and hence the rate of increase in the viscosity. A similar effect is produced with temperature as a parameter, which also augments the reaction rate. The modified reaction rate constant in case of any external stimulus or perturbation acting on the system may be computed from the scalar K, where ... [Pg.713]

Miura (Y3) have studied the effect of the addition of glycerol to water on the reaction rate constant. The reaction in the liquid phase is second order. Their values for k" at 28°C, which indicate a slight increase with increasing viscosity, are given in Table I. [Pg.302]

For chemical reaction-rate constants greater than 10 sec-1, NT increases linearly with the total bubble surface area, i.e., linearly with the gas holdup. In other words, the agitation rate only affects the total bubble surface area and has almost no effect on the rate of absorption per unit area. This result is in accordance with the work of Calderbank and Moo-Young (C4), discussed in Section II. [Pg.358]

The effectiveness factor depends, not only on the reaction rate constant and the effective diffusivity, but also on the size and shape of the catalyst pellets. In the following analysis detailed consideration is given to particles of two regular shapes ... [Pg.635]

By reducing an elementary reaction model taken fi om the database, a comprehensive gas-phase reaction model of propane pyrolysis was derived objectively. The reaction rate constants that were not accurate under the conditions of interest were found and refined by fitting with the experimental results. The obtained reaction model well represented the effects of the gas residence time and temperature on the product gas composition observed in experiments under pyrocarbon CVD conditions. [Pg.220]

Effect of solvent on reaction rate constant of reaction between carbon dioxide and glycidyl methacrylate using Aliquat 336 as a catalyst... [Pg.345]

The rate constants in organic reaction in a solvent generally reflect the solvent effect. Various empirical measures of the solvent effect have been proposed and correlated with the reaction rate constant [5]. Of these, some measures have a linear relation to the solubility parameter of the solvent. The logarithms of kj and k2/ki were plotted against the solubility parameter of toluene, NMP and DMSO[6] in Fig. 2. As shown in Fig.2, the plots satisfied the linear relationship. The solvent polarity is increased by the increase of solubility parameter of the solvent. It may be assumed that increase of unstability and solvation of Ci due to the increase of solvent polarity make the dissociation reaction of Ci and the reaction between Ci and COisuch as SNi by solvation[7] easier, respectively, and then, k2/ki and ks increases as increasing the solubility parameter as shown in Fig. 2. [Pg.347]

The overall reaction between CO2 and GMA was assumed to consist of two elementary reactions such as a reversible reaction of GMA and catalyst to form an intermediate and an irreversible reaction of this intermediate and carbon dioxide to form five-membered cyclic carbonate. Absorption data for CO2 in the solution at 101.3 N/m were interpreted to obtain pseudo-first-order reaction rate constant, which was used to obtain the elementary reaction rate constants. The effects of the solubility parameter of solvent on lc2/k and IC3 were explained using the solvent polarity. [Pg.348]

The apparent reaction rate constant for the first order reaction, k, was calculated from the conversion of CO2. Since the gas-volume reduction rate increased with k, a poor fluidization was induced by high reaction rate. We investigated the effect of the rate of the gas-volume change on the fluidization quality. The rate of the gas-volume change can be defined as rc=EA(dxA/dt), where Sa is the increase in the number of moles when the reactants completely react per the initial number of moles. This parameter is given by 7-1. When the parameter, Ea, is negative, the gas volume decreases as the reaction proceeds. [Pg.499]

GL 21] [no reactor] [P 22] A constant conversion is approached on increasing the reaction rate constant [73]. This shows that liquid transport of hydrogen to the catalyst has a dominant role. In turn, this means that a higher catalyst loading should have not too much effect. [Pg.638]

The deuterium kinetic isotope effect between BH3-THF and BD3-THF was obtained by measuring the reaction rate constants of the two reactions with the unsaturated sulfoxide (Sj-40 independently via React-IR. The k(BH3)/k(BD3) is 1.4, consistent with hydrogen transfer not being the rate-limiting step [15, 16]. [Pg.159]

Now consider the effect of temperature on the rate of reaction. A qualitative observation is that most reactions go faster as the temperature increases. An increase in temperature of 10°C from room temperature typically doubles the rate of reaction for organic species in solution. It is found in practice that if the logarithm of the reaction rate constant is plotted against the inverse of absolute temperature, it tends to follow a straight line. Thus, at the same concentration, but at two different temperatures ... [Pg.104]

Although the concepts of specific acid and specific base catalysis were useful in the analysis of some early kinetic data, it soon became apparent that any species that could effect a proton transfer with the substrate could exert a catalytic influence on the reaction rate. Consequently, it became desirable to employ the more general Br0nsted-Lowry definition of acids and bases and to write the reaction rate constant as... [Pg.221]

When the effectiveness factors for both reactions approach unity, the selectivity for two independent simultaneous reactions is the ratio of the two intrinsic reaction-rate constants. However, at low values of both effectiveness factors, the selectivity of a porous catalyst may be greater than or less than that for a plane-catalyst surface. For a porous spherical catalyst at large values of the Thiele modulus s, the effectiveness factor becomes inversely proportional to (j>S9 as indicated by equation 12.3.68. In this situation, equation 12.3.133 becomes... [Pg.469]


See other pages where Reaction rate constant effect is mentioned: [Pg.153]    [Pg.153]    [Pg.1351]    [Pg.227]    [Pg.171]    [Pg.375]    [Pg.1905]    [Pg.407]    [Pg.283]    [Pg.132]    [Pg.256]    [Pg.360]    [Pg.21]    [Pg.345]    [Pg.158]    [Pg.70]    [Pg.224]    [Pg.658]    [Pg.85]    [Pg.590]    [Pg.81]    [Pg.251]    [Pg.114]    [Pg.43]    [Pg.122]    [Pg.319]    [Pg.370]    [Pg.443]   
See also in sourсe #XX -- [ Pg.193 , Pg.194 , Pg.195 , Pg.196 ]




SEARCH



Effective rate constant

Rate constant, effect

Reaction rate constant

Reaction rate, effective

Reaction rates effects

© 2024 chempedia.info