Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction path solvent effect

Multidimensionality may also manifest itself in the rate coefficient as a consequence of anisotropy of the friction coefficient [M]- Weak friction transverse to the minimum energy reaction path causes a significant reduction of the effective friction and leads to a much weaker dependence of the rate constant on solvent viscosity. These conclusions based on two-dimensional models also have been shown to hold for the general multidimensional case [M, 59, and 61]. [Pg.851]

Solvent can have an effect on the reaction path. The reaction between benzoyl peroxide and N,iV-dimethylaniline in carbon tetrachloride is complicated by the strong chain transfer tendencies of this solvent [47]. [Pg.834]

The differences in rate for the two positions of naphthalene show clearly that an additional-elimination mechanism may be ruled out. On the other hand, the magnitude of the above isotope effect is smaller than would be expected for a reaction involving rate-determining abstraction of hydrogen, so a mechanism involving significant internal return had been proposed, equilibria (239) and (240), p. 266. In this base-catalysed (B-SE2) reaction both k and k 2 must be fast in view of the reaction path symmetry. If diffusion away of the labelled solvent molecule BH is not rapid compared with the return reaction kLt a considerable fraction of ArLi reacts with BH rather than BH, the former possibility leading to no nett isotope effect. Since the diffusion process is unlikely to have an isotope effect then the overall observed effect will be less than that for the step k. ... [Pg.273]

Should a complete potential energy surface be subjected to outer and inner effects, then a new potential energy surface is obtained on which the corresponding rection paths can be followed. This is described in part 4.3.1 by the example of the potential energy surface of the system C2H5+ jC2H4 under solvent influence. After such calculations, reaction theory assertions concerning the reaction path and the similarity between the activated complex and educts or products respectively can be made. [Pg.193]

The polarity of ground and transition states are a priori identical, because no charges are developed during the reaction path. Following this rule, spedfic micro-wave effects would not be expected for these reactions, as has been verified when the reactions were performed in a nonpolar solvent [5, 6]. Solvent effects in these reactions are also small, or negligible, for the same reasons (Fig. 3.6) [46]. [Pg.70]

The reactions of the vinylcarbenes 7 and 15 with methanol clearly involve delocalized intermediates. However, the product distributions deviate from those of free (solvated) allyl cations. Competition of the various reaction paths outlined in Scheme 5 could be invoked to explain the results. On the other hand, the effect of charge delocalization in allylic systems may be partially offset by ion pairing. Proton transfer from alcohols to carbenes will give rise to carbocation-alkoxide ion pairs that is, the counterion will be closer to the carbene-derived carbon than to any other site. Unless the paired ions are rapidly separated by solvent molecules, collapse of the ion pair will mimic a concerted O-H insertion reaction. [Pg.5]

Even at this level of dynamical theory, one is not restricted to considering equilibrium solvation of the gas-phase saddle point or of configurations along the gas-phase reaction path [109, 338-344], and to the extent that the solvent is allowed to affect the choice of the reaction path itself, dynamic (i.e., nonequilibrium) solvation effects begin to appear in the theory. [Pg.62]

Schenter, G. K., McRae, R. P. and Garrett, B. C. Dynamic solvent effects on activated chemical reactions. I. Classical effects of reaction-path curvature, J.Chem.Phys., 97 (1992), 9116-9137... [Pg.359]

Kelley and co-workers [70, 71] measured the dynamics of the excited-state intramolecular proton transfer in 3-hydroxyflavone and a series of its derivatives as a function of solvent (Scheme 2.9). The energy changes associated with the processes examined are of the order of 3 kcal/mol or less. The model they employed in the analysis of the reaction dynamics was based upon a tunneling reaction path. Interestingly, they find little or no deuterium kinetic isotope effect, which would appear to be inconsistent with tunneling theories. For 3-hydroxy-flavone, they suggest the lack of an isotope effect is due to a very large... [Pg.89]

We have discussed in this chapter the thermal pyrolyses of a number of strained ring compounds. In most of the cases considered there is good evidence that the processes are unimolecular. Where possible we have tried to suggest plausible transition complexes, and reaction paths, based on a consideration of such factors as the kinetic parameters, stereochemistry of the reaction and effect of substituents. In reactions of this type, the description of the transition complex is fraught with difficulties, since the absence of such things as solvent effects (which can be so helpfrd in bimolecular reactions) limit the criteria on which such descriptions may be based. Often two types of transition complex may be equally good at accounting for the observed data. Sometimes one complex will explain some of the data while another is better able to account for the remainder. It is probable that in many cases our representation... [Pg.190]


See other pages where Reaction path solvent effect is mentioned: [Pg.278]    [Pg.830]    [Pg.842]    [Pg.848]    [Pg.855]    [Pg.856]    [Pg.2312]    [Pg.436]    [Pg.240]    [Pg.392]    [Pg.201]    [Pg.202]    [Pg.193]    [Pg.97]    [Pg.201]    [Pg.215]    [Pg.307]    [Pg.78]    [Pg.300]    [Pg.138]    [Pg.147]    [Pg.167]    [Pg.343]    [Pg.346]    [Pg.389]    [Pg.102]    [Pg.203]    [Pg.952]    [Pg.328]    [Pg.148]    [Pg.115]    [Pg.684]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Reaction path

© 2024 chempedia.info