Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction outer sphere mechanism

On the basis of these results it seems to the present author that inner and outer complexes can reasonably be assumed for the electron transfer to the diazonium ion, but that an outer-sphere mechanism is more likely for metal complexes with a completely saturated coordination sphere of relatively high stability, such as Fe(CN) (Bagal et al., 1974) or ferrocene (Doyle et al., 1987 a). Romming and Waerstad (1965) isolated the complex obtained from a Sandmeyer reaction of benzenediazonium ions and [Cu B ]- ions. The X-ray structural data for this complex also indicate an outer-sphere complex. [Pg.197]

The Marcus treatment applies to both inorganic and organic reactions, and has been particularly useful for ET reactions between metal complexes that adopt the outer-sphere mechanism. Because the coordination spheres of both participants remain intact in the transition state and products, the assumptions of the model are most often satisfied. To illustrate the treatment we shall consider a family of reactions involving partners with known EE rate constants. [Pg.247]

In the same way that we considered two limiting extremes for ligand substitution reactions, so may we distinguish two types of reaction pathway for electron transfer (or redox) reactions, as first put forth by Taube. For redox reactions, the distinction between the two mechanisms is more clearly defined, there being no continuum of reactions which follow pathways intermediate between the extremes. In one pathway, there is no covalently linked intermediate and the electron just hops from one center to the next. This is described as the outer-sphere mechanism (Fig. 9-4). [Pg.189]

Figure 9-4. The outer-sphere mechanism for an electron transfer reaction between two complexes. No covalently-linked intermediate is involved in the reaction. Figure 9-4. The outer-sphere mechanism for an electron transfer reaction between two complexes. No covalently-linked intermediate is involved in the reaction.
The aquation of [IrCl6]2- to [Er( E120)C1S] and Ir(H20)2Cl4 has been found to activate the complex toward the oxidation of insulin in acidic solutions, with measured rate constant of 25,900 and 8,400 Lmol-1 s 1, respectively.50 The oxidation reaction proceeds via an outer-sphere mechanism. [Pg.155]

Cytochrome c is responsible for accepting an electron from cytochrome Ci and transferring it to cytochrome c oxidase. The electron transfer reaction may occur via the exposed portion of the ring or by tunnelling through the protein (and involving an outer-sphere mechanism). The details of this process have not been fully elucidated and have remained the focus of much research. [Pg.241]

In aqueous solutions these reactions seem to proceed via an outer-sphere mechanism on most metals. Typically such reactions involve metal ions surrounded by inert ligands, which prevent adsorption. Note that the last example reacts via an outer-sphere pathway only if trace impurities of halide ions are carefully removed from the solution otherwise it is catalyzed by these ions. [Pg.57]

Iron(III)-catalyzed autoxidation of ascorbic acid has received considerably less attention than the comparable reactions with copper species. Anaerobic studies confirmed that Fe(III) can easily oxidize ascorbic acid to dehydroascorbic acid. Xu and Jordan reported two-stage kinetics for this system in the presence of an excess of the metal ion, and suggested the fast formation of iron(III) ascorbate complexes which undergo reversible electron transfer steps (21). However, Bansch and coworkers did not find spectral evidence for the formation of ascorbate complexes in excess ascorbic acid (22). On the basis of a combined pH, temperature and pressure dependence study these authors confirmed that the oxidation by Fe(H20)g+ proceeds via an outer-sphere mechanism, while the reaction with Fe(H20)50H2+ is substitution-controlled and follows an inner-sphere electron transfer path. To some extent, these results may contradict with the model proposed by Taqui Khan and Martell (6), because the oxidation by the metal ion may take place before the ternary oxygen complex is actually formed in Eq. (17). [Pg.408]

Most of the kinetic models predict that the sulfite ion radical is easily oxidized by 02 and/or the oxidized form of the catalyst, but this species was rarely considered as a potential oxidant. In a recent pulse radiolysis study, the oxidation of Ni(II and I) and Cu(II and I) macrocyclic complexes by SO was studied under anaerobic conditions (117). In the reactions with Ni(I) and Cu(I) complexes intermediates could not be detected, and the electron transfer was interpreted in terms of a simple outer-sphere mechanism. In contrast, time resolved spectra confirmed the formation of intermediates with a ligand-radical nature in the reactions of the M(II) ions. The formation of a product with a sulfonated macrocycle and another with an additional double bond in the macrocycle were isolated in the reaction with [NiCR]2+. These results may require the refinement of the kinetic model proposed by Lepentsiotis for the [NiCR]2+ SO/ 02 system (116). [Pg.441]

Electron transfer reactions may follow two types of mechanism (i) outer sphere mechanism and (ii) inner sphere mechanism. [Pg.139]

Similarly, inner-sphere and outer-sphere mechanisms can be postulated for the reductive dissolution of metal oxide surface sites, as shown in Figure 2. Precursor complex formation, electron transfer, and breakdown of the successor complex can still be distinguished. The surface chemical reaction is unique, however, in that participating metal centers are bound within an oxide/hydroxide... [Pg.448]

The Electron Transfer Step. Inner-sphere and outer-sphere mechanisms of reductive dissolution are, in practice, difficult to distinguish. Rates of ligand substitution at tervalent and tetravalent metal oxide surface sites, which could be used to estimate upward limits on rates of inner-sphere reaction, are not known to any level of certainty. [Pg.456]

The above discussion shows that very good agreement of observed and calculated exchange rate constants can be obtained using the semiclassical formalism. In the bimolecular reactions discussed in this paper the reactants were treated as hard spheres and an outer-sphere mechanism was assumed. If the... [Pg.126]

This rules out, I would think completely, a dominant outer-sphere mechanism for that system, because the observed rate is just too fast to be compatible with this. The self-exchange reaction must almost certainly proceed most favourably via an inner-sphere mechanism. More data of this kind are evidently needed. [Pg.133]

In order to make things a bit more concrete at this point we display in Figure 1 a sterically favorable configuration for a reactive ion pair (Tl). Only the 3d atomic orbitals most directly involved in the electron exchange are shown. The theoretical model developed here is based on a so-called "outer-sphere" mechanism, in which the inner-sphere reactants preserve their integrity in the course of the exchange reaction (aside from bond distortions associated with the activation step). The... [Pg.257]

As an example of a reaction which involves an outer-sphere mechanism the following reaction can be considered ... [Pg.9]

Only in a limited number of instances will the value of k and its associated parameters be useful in diagnosing mechanism. When the redox rate is faster than substitution within either reactant, we can be fairly certain that an outer-sphere mechanism holds. This is the case with Fe + and RuCP+ oxidation of V(II) and with rapid electron transfer between inert partners. On the other hand, when the activation parameters for substitution and redox reactions of one of the reactants are similar, an inner-sphere redox reaction, controlled by replacement, is highly likely. This appears to be the case with the oxidation by a number of Co(III) complexes of V(II), confirmed in some instanees by the appearance of the requisite V(III) complex, e.g. [Pg.262]

Examination of the data for (5.49) and (5.50) in Tables 5.7 and 5.8 shows that there is some general order of reactivity for the various ligands L. Containing an unshared electron pair after coordination appears a minimum requirement for a ligand to be potential bridging group, for it has to function as a Lewis base towards two metal cations. Thus CofNHj) and Co(NH3)jpy + oxidize Cr by an outer-sphere mechanism, giving Cr " as the product, at a much slower rate than for the inner-sphere reactions. [Pg.272]

As might be foreseen, there are a (limited) number of systems where the energetics of the outer- and inner-sphere reactions are comparable and where therefore both are paths for the reaction. An interesting example of this behavior is the reaction of Cr(H20) with IrClg which has been studied by a number of groups and is now well understood. At 0°C, most of the reaction proceeds via an outer-sphere mechanism. The residual inner-sphere process utilizes a binuclear complex, which can undergo both Cr —Cl and Ir —Cl cleavage ... [Pg.275]

In terms of electron transfer reactions, transition metal ions can be the one- or two-electron type. The two-electron ions transform into unstable states on unit change of the metal oxidation number. In the outer-sphere mechanism, two-electron transfer is a combination of two one-electron steps. [Pg.69]

Kinetic studies of hexacyanoferrate(III) oxidations have included the much-studied reaction with iodide and oxidation of the TICI2 anion, of hydrazine and hydrazinium, and of phenylhydrazine and 4-bromophenylhydrazine. These last reactions proceed by outer-sphere mechanisms, and conform to Marcus s theory. Catalyzed [Fe(CN)g] oxidations have included chlororuthenium-catalyzed oxidation of cyclohexanol, ruthenium(III)-catalyzed oxidation of 2-aminoethanol and of 3-aminopropanol, ruthenium(VI)-catalyzed oxidation of lactate, tartrate, and glycolate, and osmium(VIII)-catalyzed oxidation of benzyl alcohol and benzylamine. ... [Pg.423]

Thus, in hydrogen-transfer reactions, most of the catalysts do prefer the outer-sphere mechanism instead of the MPV or the insertion mechanisms. For instance, the high stability of the intermediate formed, alkoxide in the case of carbonyl hydrogenation, is a major drawback for the inner-sphere mechanism. Nevertheless, in some particular cases, the inner-sphere mechanism may be competitive with the outer-sphere one. In these cases, some requirements must be accomplished, such as the high lability of one of the metal ligands in order to allow easily the substrate coordination or the formation of not very stable intermediates. [Pg.238]

In the present chapter, a classification of the hydrogenation reaction mechanisms according to the necessity (or not) of the coordination of the substrate to the catalyst is presented. These mechanisms are mainly classified between inner-sphere and outer-sphere mechanisms. In turns, the inner-sphere mechanisms can be divided in insertion and Meerweein-Ponndorf-Verley (MPV) mechanisms. Most of the hydrogenation reactions are classified within the insertion mechanism. The outer-sphere mechanisms are divided in bifunctional and ionic mechanisms. Their common characteristic is that the hydrogenation takes place by the addition of H+ and H- counterparts. The main difference is that for the former the transfer takes place simultaneously, whereas for the latter the hydrogen transfer is stepwise. [Pg.255]


See other pages where Reaction outer sphere mechanism is mentioned: [Pg.352]    [Pg.190]    [Pg.120]    [Pg.658]    [Pg.58]    [Pg.257]    [Pg.472]    [Pg.95]    [Pg.221]    [Pg.367]    [Pg.448]    [Pg.451]    [Pg.107]    [Pg.300]    [Pg.9]    [Pg.143]    [Pg.396]    [Pg.69]    [Pg.789]    [Pg.454]    [Pg.236]    [Pg.250]    [Pg.256]   
See also in sourсe #XX -- [ Pg.153 , Pg.156 ]




SEARCH



Electron transfer reactions outer sphere mechanism

Mechanisms outer-sphere mechanism

Outer mechanism

Outer sphere

Outer-sphere mechanism, redox reactions

Outer-sphere mechanisms, inorganic reactions

Outer-sphere reactions

Oxidation-reduction reactions outer sphere mechanism

© 2024 chempedia.info