Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction, computation fluid dynamics

Using these methods, the elementary reaction steps that define a fuel s overall combustion can be compiled, generating an overall combustion mechanism. Combustion simulation software, like CHEMKIN, takes as input a fuel s combustion mechanism and other system parameters, along with a reactor model, and simulates a complex combustion environment (Fig. 4). For instance, one of CHEMKIN s applications can simulate the behavior of a flame in a given fuel, providing a wealth of information about flame speed, key intermediates, and dominant reactions. Computational fluid dynamics can be combined with detailed chemical kinetic models to also be able to simulate turbulent flames and macroscopic combustion environments. [Pg.90]

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

Computational fluid dynamics (CFD) emerged in the 1980s as a significant tool for fluid dynamics both in research and in practice, enabled by rapid development in computer hardware and software. Commercial CFD software is widely available. Computational fluid dynamics is the numerical solution of the equations or continuity and momentum (Navier-Stokes equations for incompressible Newtonian fluids) along with additional conseiwation equations for energy and material species in order to solve problems of nonisothermal flow, mixing, and chemical reaction. [Pg.673]

Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, energy transfer, and associated phenomena such as combustion and chemical reactions by means of computer-based simulation. CFD codes numerically solve the mass-continuity equation over a specific domain set by the user. The technique is very powerful and covers a wide range of industrial applications. Examples in the field of chemical engineering are ... [Pg.783]

Kuipers, J.A.M. and van Swaaij, W.P.M., 1997. Application of computational fluid dynamics to chemical reaction engineering. Reviews in Chemical Engineering, 13, 1-110. [Pg.313]

As the large-scale computational fluid dynamics (CFD) simulations often invoke simplifying the kinetics as one-step overall reaction, the extraction of such bulk flame parameter as overall activation energy is especially useful when the CFD calculation with detailed chemistry is not feasible. Based on the experimental results, the deduced overall achvation energies of the three equivalence ratios are shown in Figure 4.1.10a. It can be observed that the variation of with is nonmonotonic and peaks near the stoichiometric condition. [Pg.42]

In practice, the process regime will often be less transparent than suggested by Table 1.4. As an example, a process may neither be diffusion nor reaction-rate limited, rather some intermediate regime may prevail. In addition, solid heat transfer, entrance flow or axial dispersion effects, which were neglected in the present study, may be superposed. In the analysis presented here only the leading-order effects were taken into account. As a result, the dependence of the characteristic quantities listed in Table 1.5 on the channel diameter will be more complex. For a detailed study of such more complex scenarios, computational fluid dynamics, to be discussed in Section 2.3, offers powerful tools and methods. However, the present analysis serves the purpose to differentiate the potential inherent in decreasing the characteristic dimensions of process equipment and to identify some cornerstones to be considered when attempting process intensification via size reduction. [Pg.41]

Arvind Varma, Alexander S. Rogachev, Alexandra S. Mukasyan, and Stephen Hwang, Combustion Synthesis of Advanced Materials Principles and Applications J. A. M. Kuipers and W. P. M. van Swaaij, Computional Fluid Dynamics Applied to Chemical Reaction Engineering... [Pg.233]

Van den Akker, H. E. A., Computational fluid dynamics more than a promise to chemical reaction engineering . Plenary paper presented at CHISA, Prague, CZ Paper 1270 (2000). [Pg.228]

Computational fluid dynamics (CFD) is rapidly becoming a standard tool for the analysis of chemically reacting flows. For single-phase reactors, such as stirred tanks and empty tubes, it is already well-established. For multiphase reactors such as fixed beds, bubble columns, trickle beds and fluidized beds, its use is relatively new, and methods are still under development. The aim of this chapter is to present the application of CFD to the simulation of three-dimensional interstitial flow in packed tubes, with and without catalytic reaction. Although the use of... [Pg.307]

Arana et al. have performed extensive modeling and thermal characterization experiments on their reactor design. They modeled their design consisting of two suspended SiN - tubes linked with slabs of silicon using two-dimensional computation fluid dynamics and a heat transfer model (Femlab, Comsol Inc.). The heat of reaction of the steam reforming or... [Pg.539]

Pope, S. B. 1991. Mapping closures for turbulent mixing and reaction. Theoretical Computational Fluid Dynamics 2 255-70. [Pg.153]

It is common within the industry to characterize chemical processes in terms of one or a few global reaction steps, assigning an Arrhenius rate expression to describe the rate of each reaction. If knowledge of the detailed chemistry is inadequate or the chemical scheme is to be combined with computational fluid dynamics for a complex flow description, a simplified chemistry may be necessary. It is important, however, to realize that such a chemical description can only be used for the narrow range of conditions (temperature, composition, etc.) for which it is developed. Any extrapolation outside these conditions may be erroneous or even disastrous. [Pg.545]


See other pages where Reaction, computation fluid dynamics is mentioned: [Pg.232]    [Pg.1116]    [Pg.349]    [Pg.346]    [Pg.12]    [Pg.50]    [Pg.152]    [Pg.232]    [Pg.310]    [Pg.403]    [Pg.21]    [Pg.421]    [Pg.56]    [Pg.199]    [Pg.214]    [Pg.292]    [Pg.96]    [Pg.128]    [Pg.400]    [Pg.3]    [Pg.413]    [Pg.1101]    [Pg.1110]    [Pg.50]   


SEARCH



Computation fluid dynamics

Computational fluid

Computational fluid dynamics

Fluid dynamics

Reactions fluids

© 2024 chempedia.info