Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics, Rate of Reaction

In practice, thermodynamics may dictate that one side of an equilibrium be overwhelmingly favored over the other. Nevertheless, we can still apply techniques for studying equilibria to the reaction, deriving information about the position of the equilibrium (thermodynamics) and the rate of reaction (kinetics). The concepts we will develop in this short chapter are extremely general and very important. [Pg.333]

The most common problem experienced with the material in this chapter is the confusion between thermodynamics and kinetics. Rates of reactions (kinetics) are determined by the relative heights of the available transition states leading to products. [Pg.359]

Figure A3.5.5. Rate constants for the reaction of Ar with O2 as a fiinction of temperature. CRESU stands for the French translation of reaction kinetics at supersonic conditions, SIFT is selected ion flow tube, FA is flowing afterglow and HTFA is high temperature flowing afterglow. Figure A3.5.5. Rate constants for the reaction of Ar with O2 as a fiinction of temperature. CRESU stands for the French translation of reaction kinetics at supersonic conditions, SIFT is selected ion flow tube, FA is flowing afterglow and HTFA is high temperature flowing afterglow.
Several instniments have been developed for measuring kinetics at temperatures below that of liquid nitrogen [81]. Liquid helium cooled drift tubes and ion traps have been employed, but this apparatus is of limited use since most gases freeze at temperatures below about 80 K. Molecules can be maintained in the gas phase at low temperatures in a free jet expansion. The CRESU apparatus (acronym for the French translation of reaction kinetics at supersonic conditions) uses a Laval nozzle expansion to obtain temperatures of 8-160 K. The merged ion beam and molecular beam apparatus are described above. These teclmiques have provided important infonnation on reactions pertinent to interstellar-cloud chemistry as well as the temperature dependence of reactions in a regime not otherwise accessible. In particular, infonnation on ion-molecule collision rates as a ftmction of temperature has proven valuable m refining theoretical calculations. [Pg.813]

The observation of nitration in nitromethane fully dependent on the first power of the concentration of aromatic was made later. The rate of reaction of /)-dichlorobenzene ([aromatic] = 0-2 mol [HNO3] = 8-5 mol 1 ) obeyed such a law. The fact that in a similar solution 1,2,4-trichlorobenzene underwent reaction according to the same kinetic law, but about ten times slower, shows that under first-order conditions the rate of reaction depends on the reactivity of the compound. [Pg.33]

Nitration in organic solvents is strongly catalysed by small concentrations of strong acids typically a concentration of io mol 1 of sulphuric acid doubles the rate of reaction. Reaction under zeroth-order conditions is accelerated without disturbing the kinetic form, even under the influence of very strong catalysis. The effect of sulphuric acid on the nitration of benzene in nitromethane is tabulated in table 3.3. The catalysis is linear in the concentration of sulphuric acid. [Pg.40]

The addition of water depresses zeroth-order rates of nitration, although the effect is very weak compared with that of nitrate ions concentrations of 6x io mol 1 of water, and 4X io mol 1 of potassium nitrate halve the rates of reaction under similar conditions. In moderate concentrations water anticatalyses nitration under zeroth-order conditions without changing the kinetic form. This effect is shown below (table 3.5) for the nitration of toluene in nitromethane. More strikingly, the addition of larger proportions of water modifies the kinetic... [Pg.42]

The kinetics of the reactions were complicated, but three broad categories were distinguished in some cases the rate of reaction followed an exponential course corresponding to a first-order form in others the rate of reaction seemed to be constant until it terminated abruptly when the aromatic had been consumed yet others were susceptible to autocatalysis of varying intensities. It was realised that the second category of reactions, which apparently accorded to a zeroth-order rate, arose from the superimposition of the two limiting kinetic forms, for all degrees of transition between these forms could be observed. [Pg.52]

The kinetics of nitration of benzene in solutions at c. 20 °C in carbon tetrachloride have been investigated. In the presence of an excess of benzene (c. 2-4 mol 1 ) the rate was kinetically of the first order in the concentration of benzoyl nitrate. The rate of reaction was depressed by the addition of benzoic anhydride, provided that some benzoic acid was present. This result suggested that benzoyl nitrate itself was not responsible for the nitration, but generated dinitrogen pentoxide... [Pg.77]

In the nitration and acetoxylation of o-xylene the addition of acetic acid increased the rate in proportion to its concentration, the presence of 3-0 mol 1" accelerating the rate by a factor of 30. In the presence of a substantial concentration (2-2 mol 1 ) of acetic acid the rate of reaction obeyed the following kinetic expression... [Pg.89]

The three reversible mechanisms for enzyme inhibition are distinguished by observing how changing the inhibitor s concentration affects the relationship between the rate of reaction and the concentration of substrate. As shown in figure 13.13, when kinetic data are displayed as a Lineweaver-Burk plot, it is possible to determine which mechanism is in effect. [Pg.639]

The foregoing conclusion does not mean that the rate of the reaction proceeds through Table 5.1 at a constant value. The rate of reaction depends on the concentrations of reactive groups, as well as on the reactivities of the latter. Accordingly, the rate of the reaction decreases as the extent of reaction progresses. When the rate law for the reaction is extracted from proper kinetic experiments, specific reactions are found to be characterized by fixed rate constants over a range of n values. [Pg.279]

Kinetic as weU as thermodynamic problems are encountered in fluorination. The rate of reaction must be decelerated so that the energy Hberated may be absorbed or carried away without degrading the molecular stmcture. The most recent advances in direct fluorination ate the LaMar process (18—20) and the Exfluot process (21—24), which is practiced commercially by 3M. [Pg.274]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

CO oxidation catalysis is understood in depth because potential surface contaminants such as carbon or sulfur are burned off under reaction conditions and because the rate of CO oxidation is almost independent of pressure over a wide range. Thus ultrahigh vacuum surface science experiments could be done in conjunction with measurements of reaction kinetics (71). The results show that at very low surface coverages, both reactants are adsorbed randomly on the surface CO is adsorbed intact and O2 is dissociated and adsorbed atomically. When the coverage by CO is more than 1/3 of a monolayer, chemisorption of oxygen is blocked. When CO is adsorbed at somewhat less than a monolayer, oxygen is adsorbed, and the two are present in separate domains. The reaction that forms CO2 on the surface then takes place at the domain boundaries. [Pg.176]

Rates of Reaction. The rates of formation and dissociation of displacement reactions are important in the practical appHcations of chelation. Complexation of many metal ions, particulady the divalent ones, is almost instantaneous, but reaction rates of many higher valence ions are slow enough to measure by ordinary kinetic techniques. Rates with some ions, notably Cr(III) and Co (III), maybe very slow. Systems that equiUbrate rapidly are termed kinetically labile, and those that are slow are called kinetically inert. Inertness may give the appearance of stabiUty, but a complex that is apparentiy stable because of kinetic inertness maybe unstable in the thermodynamic equihbrium sense. [Pg.386]

The distribution of current (local rate of reaction) on an electrode surface is important in many appHcations. When surface overpotentials can also be neglected, the resulting current distribution is called primary. Primary current distributions depend on geometry only and are often highly nonuniform. If electrode kinetics is also considered, Laplace s equation stiU appHes but is subject to different boundary conditions. The resulting current distribution is called a secondary current distribution. Here, for linear kinetics the current distribution is characterized by the Wagner number, Wa, a dimensionless ratio of kinetic to ohmic resistance. [Pg.66]

Kinetic mles of oxidation of MDASA and TPASA by periodate ions in the weak-acidic medium at the presence of mthenium (VI), iridium (IV), rhodium (III) and their mixtures are investigated by spectrophotometric method. The influence of high temperature treatment with mineral acids of catalysts, concentration of reactants, interfering ions, temperature and ionic strength of solutions on the rate of reactions was investigated. Optimal conditions of indicator reactions, rate constants and energy of activation for arylamine oxidation reactions at the presence of individual catalysts are determined. [Pg.37]

The science of reaction kinetics between molecular species in a homogeneous gas phase was one of the earliest helds to be developed, and a quantitative calculation of tire rates of chemical reactions was considerably advatrced by the development of the collision theoty of gases. According to this approach the rate at which the classic reaction... [Pg.45]

The experimental unit, shown on the previous page, is the simplest assembly that can be used for high-pressure kinetic studies and catalyst testing. The experimental method is measurement of the rate of reaction in a CSTR (Continuous Stirred Tank Reactor) by a steady-state method. [Pg.86]


See other pages where Kinetics, Rate of Reaction is mentioned: [Pg.18]    [Pg.721]    [Pg.2]    [Pg.17]    [Pg.476]    [Pg.375]    [Pg.468]    [Pg.10]    [Pg.476]    [Pg.5]    [Pg.18]    [Pg.721]    [Pg.2]    [Pg.17]    [Pg.476]    [Pg.375]    [Pg.468]    [Pg.10]    [Pg.476]    [Pg.5]    [Pg.914]    [Pg.1081]    [Pg.35]    [Pg.634]    [Pg.165]    [Pg.206]    [Pg.275]    [Pg.452]    [Pg.267]    [Pg.350]    [Pg.508]    [Pg.7]    [Pg.221]    [Pg.513]    [Pg.335]    [Pg.514]    [Pg.78]    [Pg.123]    [Pg.2369]    [Pg.47]    [Pg.201]   


SEARCH



Kinetic rates

Kinetics reaction rates

Rate Kinetics

© 2024 chempedia.info