Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate-limiting step, formation

Bromination and oxymercuration have been found to have different rate-limiting steps formation of the bromonium ion for the former reaction and attack by solvent on mer-curonium ion for the latter142. [Pg.1154]

The overall requirement is 1.0—2.0 s for low energy waste compared to typical design standards of 2.0 s for RCRA ha2ardous waste units. The most important, ie, rate limiting steps are droplet evaporation and chemical reaction. The calculated time requirements for these steps are only approximations and subject to error. For example, formation of a skin on the evaporating droplet may inhibit evaporation compared to the theory, whereas secondary atomization may accelerate it. Errors in estimates of the activation energy can significantly alter the chemical reaction rate constant, and the pre-exponential factor from equation 36 is only approximate. Also, interactions with free-radical species may accelerate the rate of chemical reaction over that estimated solely as a result of thermal excitation therefore, measurements of the time requirements are desirable. [Pg.56]

Other mechanisms, involving initial formation of ethylene oxide [75-21-8] as the possible rate-limiting step, complexation of CuC with HCl (92), and C as the chlorinating agent (93) have been suggested. [Pg.417]

Hydrolysis of esters and amides by enzymes that form acyl enzyme intermediates is similar in mechanism but different in rate-limiting steps. Whereas formation of the acyl enzyme intermediate is a rate-limiting step for amide hydrolysis, it is the deacylation step that determines the rate of ester hydrolysis. This difference allows elimination of the undesirable amidase activity that is responsible for secondary hydrolysis without affecting the rate of synthesis. Addition of an appropriate cosolvent such as acetonitrile, DMF, or dioxane can selectively eliminate undesirable amidase activity (128). [Pg.345]

Enzymes assist formation of proper disulfide bonds during folding Isomerization of proline residues can be a rate-limiting step in protein folding Proteins can fold or unfold inside chaperonins GroEL is a cylindrical structure with a... [Pg.414]

Consider the series reaction A—>B—>C. If the first step is very much slower than the second step, the rate of formation of C is controlled by the rate of the first step, which is called the rate-determining step (rds), or rate-limiting step, of the reaction. Similarly, if the second step is the slower one, the rate of production of C is controlled by the second step. The slower of these two steps is the bottleneck in the overall reaction. This flow analogy, in which the rate constants of the separate steps are analogous to the diameters of necks in a series of funnels, is widely used in illustration of the concept of the rds. [Pg.213]

Bromination usually follows a two-step mechanism, the rate-limiting step involving formation of an adduct with Br. Calculate energies for Br addition to phenylacetylene and styrene, leading to phenylacetylene+Br+ and styrene+Br+, respectively. (The energy of Br+ is given at right.) Which reaction is more favorable Is this the same preference as seen for Br2 addition ... [Pg.115]

The rate-limiting step in diazotizations with nitrosyl halides can in some cases be the formation of the nitrosyl halide (Scheme 3-26) this occurs with very reactive aniline derivatives (Hughes and Ridd, 1958). Alternatively it can be the deprotona-... [Pg.56]

The only really different case is the azo coupling reaction of nitroethane investigated by Sterba and coworkers (Machacek et al., 1968a, 1968b). With the 4-nitrobenzenediazonium ion the reaction is zero-order with respect to diazonium ion and first-order in both nitroethane and base. Obviously the rate-limiting step is the dissociation of nitroethane the formation of the anion is slower than its subsequent reaction with this diazonium ion. For reactions with diazonium ions of lower reactivity it was found necessary to use the reaction system of Scheme 12-64 with the nitroethane anion as steady state intermediate (Machacek et al., 1968b). [Pg.351]

Reaction 1 is the slowest step in this series of reactions leading to product formation. It is the rate-limiting step. Since this reaction involves bringing E and S together, it is a second-order reaction overall and first order with respect to the total enzyme concentration and the substrate concentration. [Pg.100]

The hydrogenation of dioxomethylene, step (33) is, most likely, the rate-limiting step, although the hydrogenation of formate in (32) is a also candidate. By assuming that Eqs. (24), (23) and (29) are slow for the water-gas shift reaction and that (33) is slow for methanol synthesis, we arrive at the following set of equations, in which one site is assumed to consist of two copper atoms ... [Pg.314]

As with chlorine-containing oxidants, JV-bromo species have been used to oxidize sulphoxides to sulphones (with no bromine incorporation) through the initial formation of a bromosulphonium ion, by nucleophilic attack of the sulphoxide sulphur atom on the electrophilic halogen atom. Such reactions involve JV-bromosuccinimide ° bromamine-T, iV-bromoacetamide ° and iV-bromobenzenesulphonamide. All reported studies were of a kinetic nature and yields were not quoted. In acid solution all oxidations occurred at or around room temperature with the nucleophilic attack on the electrophilic bromine atom being the rate-limiting step. In alkaline solution a catalyst such as osmium tetroxide is required for the reaction to proceed . ... [Pg.982]


See other pages where Rate-limiting step, formation is mentioned: [Pg.124]    [Pg.268]    [Pg.19]    [Pg.175]    [Pg.124]    [Pg.268]    [Pg.19]    [Pg.175]    [Pg.43]    [Pg.513]    [Pg.405]    [Pg.2373]    [Pg.31]    [Pg.119]    [Pg.502]    [Pg.439]    [Pg.102]    [Pg.196]    [Pg.393]    [Pg.397]    [Pg.147]    [Pg.259]    [Pg.268]    [Pg.429]    [Pg.430]    [Pg.982]    [Pg.172]    [Pg.173]    [Pg.192]    [Pg.173]    [Pg.237]    [Pg.54]    [Pg.315]    [Pg.88]    [Pg.519]    [Pg.657]    [Pg.659]    [Pg.25]    [Pg.25]    [Pg.90]    [Pg.120]    [Pg.183]   


SEARCH



Formation rate

Product formation rate limiting step determination

Rate limitations

Rate limiting

Rate-limiting step

Rate-limiting step, formation crystalline phase

Ratings formation

© 2024 chempedia.info