Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy resonance effect

The same effect is visible in Raman spectroscopy, causing basehne ripples and perturbation of band intensifies. In Raman spectroscopy the effect is sometimes termed morphology-dependent resonance . [Pg.21]

Infrared and Raman Spectroscopy. Resonance Raman spectra of aW-trans- and 15-CW-/3-carotene have been compared.The ps resonance Raman spectrum of /8-carotene has been described,and solvent effects on the excitation profile of the line of jS-carotene have been studied. Model calculations have been used to interpret observed jS-carotene Raman spectra and excitation profiles. Raman scattering spectra of j8-carotene-l2 complexes have been determined. Resonance Raman spectra of carotenoids have been used as an intrinsic probe for membrane potential, e.g. neurosporene [7,8-dihydro-(/r,(/r-carotene (183)] in chromatophores of Rhodopseudomonas sphaeroides. ° Resonance Raman spectroscopy and i.r. spectroscopy have been used in studies of the chromophore of visual pigments and visual cycle intermediates and of bacteriorhodopsin and its photocycle intermediates. ... [Pg.154]

The bending mode, 5Fe-N-0 in the metastable state (MSi) of Na2[Fe(CN)s(NO)] shows a " N/ N isotopic shift consistent with an Fe-O-N linkage.Ferric-NO and ferrous-CO complexes of cytochrome P450hor have been studied by resonance Raman spectroscopy. The effects of haem modification on bonding were followed from changes in vNO and vCO. The value of vNO for (ON)Fe(TPP) is very sensitive to intermolecular forces in the solid state. ... [Pg.333]

The varying actual orientation of molecules adsorbed at an aqueous solution-CCU interface with decreasing A has been followed by resonance Raman spectroscopy using polarized light [130]. The effect of pressure has been studied for fatty alcohols at the water-hexane [131] and water-paraffin oil [132] interfaces. [Pg.85]

The unique feature in spontaneous Raman spectroscopy (SR) is that field 2 is not an incident field but (at room temperature and at optical frequencies) it is resonantly drawn into action from the zero-point field of the ubiquitous blackbody (bb) radiation. Its active frequency is spontaneously selected (from the infinite colours available in the blackbody) by the resonance with the Raman transition at co - 0I2 r material. The effective bb field mtensity may be obtained from its energy density per unit circular frequency, the... [Pg.1197]

Resonance Raman Spectroscopy. If the excitation wavelength is chosen to correspond to an absorption maximum of the species being studied, a 10 —10 enhancement of the Raman scatter of the chromophore is observed. This effect is called resonance enhancement or resonance Raman (RR) spectroscopy. There are several mechanisms to explain this phenomenon, the most common of which is Franck-Condon enhancement. In this case, a band intensity is enhanced if some component of the vibrational motion is along one of the directions in which the molecule expands in the electronic excited state. The intensity is roughly proportional to the distortion of the molecule along this axis. RR spectroscopy has been an important biochemical tool, and it may have industrial uses in some areas of pigment chemistry. Two biological appHcations include the deterrnination of helix transitions of deoxyribonucleic acid (DNA) (18), and the elucidation of several peptide stmctures (19). A review of topics in this area has been pubHshed (20). [Pg.210]

W. M. Kwok and D. L. Phillips, Solvation effects and short-time photodissociation dynamics of CH2I2 in solution from resonance Raman spectroscopy. Chem. Phys. Lett. 235(3-4), 260-267 (1995). [Pg.286]

Some of the transition metal macrocycles adsorbed on electrode surfaces are of special Interest because of their high catalytic activity for dloxygen reduction. The Interaction of the adsorbed macrocycles with the substrate and their orientation are of Importance In understanding the factors controlling their catalytic activity. In situ spectroscopic techniques which have been used to examine these electrocatalytlc layers Include visible reflectance spectroscopy surface enhanced and resonant Raman and Mossbauer effect spectroscopy. This paper Is focused principally on the cobalt and Iron phthalocyanlnes on silver and carbon electrode substrates. [Pg.535]

In most work on electrochemical systems, use is made of two effects that greatly enhance the Raman signals. One is resonance Raman spectroscopy (RRS), wherein the excitation wavelength corresponds to an electronic transition in an adsorbed molecule on an electrode surface. The other effect is surface-enhanced Raman spectroscopy (SERS), which occurs on certain surfaces, such as electrochemically roughened silver and gold. This effect, discovered by Fleischmann et al. (1974), yields enhancements of 10 to 10 . The vast majority of publications on Raman studies of electrochemical systems use SERS. The limitations of SERS are that it occurs on only a few metals and the mechanism of the enhancement is not understood. There is speculation that only a small part of the surface is involved in the effect. There is a very good review of SERS (Pemberton, 1991). [Pg.499]

The sensitivity limitations of TLC-FT-Raman spectroscopy may be overcome by applying the SERS effect [782]. Unlike infrared, a major gain in Raman signal can be achieved by utilising surface activation and/or resonance effects. Surface-enhanced Raman (SER) spectra can be observed for compounds adsorbed on (rough) metahic surfaces, usually silver or gold colloids [783,784], while resonance Raman (RR) spectra... [Pg.536]

The functionalization of zinc porphyrin complexes has been studied with respect to the variation in properties. The structure and photophysics of octafluorotetraphenylporphyrin zinc complexes were studied.762 Octabromoporphyrin zinc complexes have been synthesized and the effects on the 11 NMR and redox potential of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraarylporphyrin were observed.763 The chiral nonplanar porphyrin zinc 3,7,8,12,13,17,18-heptabromo-2-(2-methoxyphenyl)-5,10,15,20-tetraphenylporphyrin was synthesized and characterized.764 X-ray structures for cation radical zinc 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin and the iodinated product that results from reaction with iodine and silver(I) have been reported.765 Molecular mechanics calculations, X-ray structures, and resonance Raman spectroscopy compared the distortion due to zinc and other metal incorporation into meso dialkyl-substituted porphyrins. Zinc disfavors ruffling over doming with the total amount of nonplanar distortion reduced relative to smaller metals.766 Resonance Raman spectroscopy has also been used to study the lowest-energy triplet state of zinc tetraphenylporphyrin.767... [Pg.1216]

Raman spectroscopy is primarily useful as a diagnostic, inasmuch as the vibrational Raman spectrum is directly related to molecular structure and bonding. The major development since 1965 in spontaneous, c.w. Raman spectroscopy has been the observation and exploitation by chemists of the resonance Raman effect. This advance, pioneered in chemical applications by Long and Loehr (15a) and by Spiro and Strekas (15b), overcomes the inherently feeble nature of normal (nonresonant) Raman scattering and allows observation of Raman spectra of dilute chemical systems. Because the observation of the resonance effect requires selection of a laser wavelength at or near an electronic transition of the sample, developments in resonance Raman spectroscopy have closely paralleled the increasing availability of widely tunable and line-selectable lasers. [Pg.466]

The first laser Raman spectra were inherently time-resolved (although no dynamical processes were actually studied) by virtue of the pulsed excitation source (ruby laser) and the simultaneous detection of all Raman frequencies by photographic spectroscopy. The advent of the scanning double monochromator, while a great advance for c.w. spectroscopy, spelled the temporary end of time resolution in Raman spectroscopy. The time-resolved techniques began to be revitalized in 1968 when Bridoux and Delhaye (16) adapted television detectors (analogous to, but faster, more convenient, and more sensitive than, photographic film) to Raman spectroscopy. The advent of the resonance Raman effect provided the sensitivity required to detect the Raman spectra of intrinsically dilute, short-lived chemical species. The development of time-resolved resonance Raman (TR ) techniques (17) in our laboratories and by others (18) has led to the routine TR observation of nanosecond-lived transients (19) and isolated observations of picosecond-timescale events by TR (20-22). A specific example of a TR study will be discussed in a later section. [Pg.466]


See other pages where Raman spectroscopy resonance effect is mentioned: [Pg.485]    [Pg.266]    [Pg.56]    [Pg.344]    [Pg.584]    [Pg.208]    [Pg.318]    [Pg.434]    [Pg.164]    [Pg.276]    [Pg.6]    [Pg.46]    [Pg.36]    [Pg.157]    [Pg.5]    [Pg.679]    [Pg.136]    [Pg.127]    [Pg.347]    [Pg.87]    [Pg.140]    [Pg.415]    [Pg.416]    [Pg.118]    [Pg.239]    [Pg.490]    [Pg.220]    [Pg.343]    [Pg.12]    [Pg.190]    [Pg.183]    [Pg.53]    [Pg.37]    [Pg.169]    [Pg.276]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Effect resonance

Raman effect

Resonance Raman

Resonance Raman effect

Resonant Raman spectroscopy

© 2024 chempedia.info