Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactivity atomic number

The four main discoveries of X-rays, radioactivity, atomic number, and isotopy are examined in this chapter by following a roughly historical order, although it must be appreciated that there was much overkp among these four themes. [Pg.160]

There are other less common types of radioactive decay. Positron emission results in a decrease by one unit in the atomic number K capture involves the incorporation of one of the extranuclear electrons into the nucleus, the atomic number is again decreased by one unit. [Pg.339]

All elements of atomic number greater than 83 exhibit radioactive decay K, Rb, Ir and a few other light elements emit p particles. The heavy elements decay through various isotopes until a stable nucleus is reached. Known half-lives range from seconds to 10 years. [Pg.339]

Atoms with the same number of protons but a different number of neutrons are called isotopes. To identify an isotope we use the symbol E, where E is the element s atomic symbol, Z is the element s atomic number (which is the number of protons), and A is the element s atomic mass number (which is the sum of the number of protons and neutrons). Although isotopes of a given element have the same chemical properties, their nuclear properties are different. The most important difference between isotopes is their stability. The nuclear configuration of a stable isotope remains constant with time. Unstable isotopes, however, spontaneously disintegrate, emitting radioactive particles as they transform into a more stable form. [Pg.642]

The most important types of radioactive particles are alpha particles, beta particles, gamma rays, and X-rays. An alpha particle, which is symbolized as a, is equivalent to a helium nucleus, fHe. Thus, emission of an alpha particle results in a new isotope whose atomic number and atomic mass number are, respectively, 2 and 4 less than that for the unstable parent isotope. [Pg.642]

By measuring the activity at time f, therefore, we can determine the initial activity, Aq, or the number of radioactive atoms originally present in the sample, Nq. [Pg.643]

Since the half-life is independent of the number of radioactive atoms, it remains constant throughout the decay process. Thus, 50% of the radioactive atoms disintegrate in one half-life, 75% in two half-lives, and 87.5% in three half-lives. [Pg.643]

Other isotopes can be used to determine the age of samples. The age of rocks, for example, has been determined from the ratio of the number of radioactive atoms to the number of stable gfPb atoms produced by radioactive decay. For rocks that do not contain uranium, dating is accomplished by comparing the ratio of radioactive fgK to the stable fgAr. Another example is the dating of sediments collected from lakes by measuring the amount of g Pb present. [Pg.648]

Natural radioactive processes in themselves give rise to changes of one element into another. Emission of an alpha particle reduces the atomic number of an element by two units, and emission of a beta particle increases the atomic number by one unit. Thus, for isotopes of elements near... [Pg.364]

Ratios of lead isotopes depend on the source of the lead. They vary because lead is an end product of radioactive decay from elements of greater atomic number. [Pg.365]

Plutonium (Pu) is an artificial element of atomic number 94 that has its main radioactive isotopes at 2 °Pu and Pu. The major sources of this element arise from the manufacture and detonation of nuclear weapons and from nuclear reactors. The fallout from detonations and discharges of nuclear waste are the major sources of plutonium contamination of the environment, where it is trapped in soils and plant or animal life. Since the contamination levels are generally very low, a sensitive technique is needed to estimate its concentration. However, not only the total amount can be estimated. Measurement of the isotope ratio provides information about its likely... [Pg.369]

Lead, atomic number 82, is a member of Group 14 (IVA) of the Periodic Table. Ordinary lead is bluish grey and is a mixture of isotopes of mass number 204 (15%), 206 (23.6%), 207 (22.6%), and 208 (52.3%). The average atomic weight of lead from different origins may vary as much as 0.04 units. The stable isotopes are products of decay of three naturally radioactive elements (see Radioactivity, natural) comes from the uranium series (see Uraniumand... [Pg.32]

The analysis of steady-state and transient reactor behavior requires the calculation of reaction rates of neutrons with various materials. If the number density of neutrons at a point is n and their characteristic speed is v, a flux effective area of a nucleus as a cross section O, and a target atom number density N, a macroscopic cross section E = Na can be defined, and the reaction rate per unit volume is R = 0S. This relation may be appHed to the processes of neutron scattering, absorption, and fission in balance equations lea ding to predictions of or to the determination of flux distribution. The consumption of nuclear fuels is governed by time-dependent differential equations analogous to those of Bateman for radioactive decay chains. The rate of change in number of atoms N owing to absorption is as follows ... [Pg.211]

Decay products of the principal radionuclides used in tracer technology (see Table 1) are not themselves radioactive. Therefore, the primary decomposition events of isotopes in molecules labeled with only one radionuclide / molecule result in unlabeled impurities at a rate proportional to the half-life of the isotope. Eor and H, impurities arising from the decay process are in relatively small amounts. Eor the shorter half-life isotopes the relative amounts of these impurities caused by primary decomposition are larger, but usually not problematic because they are not radioactive and do not interfere with the application of the tracer compounds. Eor multilabeled tritiated compounds the rate of accumulation of labeled impurities owing to tritium decay can be significant. This increases with the number of radioactive atoms per molecule. [Pg.438]

By this time, the Periodic Table of elements was well developed, although it was considered a function of the atomic mass rather than atomic number. Before the discovery of radioactivity, it had been estabUshed that each natural element had a unique mass thus it was assumed that each element was made up of only one type of atom. Some of the radioactivities found in both the uranium and thorium decays had similar chemical properties, but because these had different half-Hves it was assumed that there were different elements. It became clear, however, that if all the different radioactivities from uranium and thorium were separate elements, there would be too many to fit into the Periodic Table. [Pg.443]

Radioactivity is equal to the rate of decay of a given radioisotope. This quantity is proportional to the number of radioactive atoms present, so that for a single isotope,... [Pg.475]

Thorium [7440-29-1], a naturally occurring radioactive element, atomic number 90, atomic mass 232.0381, is the second element of the actinide ( f) series (see Actinides AND transactinides Radioisotopes). Discovered in 1828 in a Norwegian mineral, thorium was first isolated in its oxide form. For the light actinide elements in the first half of the. series, there is a small energy difference between and 5/ 6d7 electronic configurations. Atomic spectra... [Pg.35]

Uranium [7440-61-17 is a naturally occurring radioactive element with atomic number 92 and atomic mass 238.03. Uranium was discovered in a pitchblende [1317-75-5] specimen ia 1789 by M. H. Klaproth (1) who named the element uranit after the planet Uranus, which had been recendy discovered. For 50 years the material discovered by Klaproth was thought to be metallic uranium. Pnligot showed that the uranit discovered by Klaproth was really uranium dioxide [1344-57-6] UO2, and obtained the tme elemental uranium as a black powder in 1841 by reduction of UCl [10026-10-5] with potassium (2). [Pg.313]

The abundance of a trace element is often too small to be accurately quantihed using conventional analytical methods such as ion chromatography or mass spectrometry. It is possible, however, to precisely determine very low concentrations of a constituent by measuring its radioactive decay properties. In order to understand how U-Th series radionuclides can provide such low-level tracer information, a brief review of the basic principles of radioactive decay and the application of these radionuclides as geochronological tools is useful. " The U-Th decay series together consist of 36 radionuclides that are isotopes (same atomic number, Z, different atomic mass, M) of 10 distinct elements (Figure 1). Some of these are very short-lived (tj j 1 -nd are thus not directly useful as marine tracers. It is the other radioisotopes with half-lives greater than 1 day that are most useful and are the focus of this chapter. [Pg.35]

An alplia p uticle is an energetic helium nucleus. The alplia particle is released from a radioactive element witli a neutron to proton ratio tliat is too low. The helium nucleus consists of two protons and two neutrons. The alplia particle differs from a helimn atom in that it is emitted witliout any electrons. The resulting daughter product from tliis tj pe of transformation lias an atomic number Uiat is two less tluin its parent and an atomic mass number tliat is four less. Below is an e. aiiiple of alpha decay using polonium (Po) polonium has an atomic mass number of 210 (protons and neutrons) and atomic number of 84. [Pg.194]

Since the radioactive half-lives of the known transuranium elements and their resistance to spontaneous fission decrease with increase in atomic number, the outlook for the synthesis of further elements might appear increasingly bleak. However, theoretical calculations of nuclear stabilities, based on the concept of closed nucleon shells (p. 13) suggest the existence of an island of stability around Z= 114 and N= 184. Attention has therefore been directed towards the synthesis of element 114 (a congenor of Pb in Group 14 and adjacent superheavy elements, by bombardment of heavy nuclides with a wide range of heavy ions, but so far without success. [Pg.1253]

The actinide metals are electropositive and reactive, apparently becoming increasingly so with atomic number. They tarnish rapidly in air, forming an oxide coating which is protective in the case of Th but less so for the other elements. Because of the self-heating associated with its radioactivity (100 g Pu generates 0.2 watts of heat) Pu is best stored in circulating dried air. All are pyrophoric when finely divided. [Pg.1264]

In 1938 Niels Bohr had brought the astounding news from Europe that the radiochemists Otto Hahn and Fritz Strassmann in Berlin had conclusively demonstrated that one of the products of the bom-bardmeiit of uranium by neutrons was barium, with atomic number 56, in the middle of the periodic table of elements. He also announced that in Stockholm Lise Meitner and her nephew Otto Frisch had proposed a theory to explain what they called nuclear fission, the splitting of a uranium nucleus under neutron bombardment into two pieces, each with a mass roughly equal to half the mass of the uranium nucleus. The products of Fermi s neutron bombardment of uranium back in Rome had therefore not been transuranic elements, but radioactive isotopes of known elements from the middle of the periodic table. [Pg.499]

Uranium (symbol U atomic number 92) is the heaviest element to occur naturally on Earth. The most commonly occurring natural isotope of uranium, U-238, accounts for approximately 99.3 percent of the world s uranium. The isotope U-235, the second most abundant naturally occurring isotope, accounts for another 0.7 percent. A third isotope, U-234, also occurs uatiirally, but accounts for less than 0.01 percent of the total naturally occurring uranium. The isotope U-234 is actually a product of radioactive decay of U-238. [Pg.866]

Plutonium (symbol Pu atomic number 93) is not a naturally occurring element. Plutonium is formed in a nuclear reaction from a fertile U-238 atom. Since U-238 is not fissile, it has a tendency to absorb a neutron in a reactor, rather than split apart into smaller fragments. By absorbing the extra neutron, U-238 becomes U-239. Uranium-239 is not very stable, and undergoes spontaneous radioactive decay to produce Pu-239. [Pg.869]

The ratios of stable isotopes (red dots) fall within a narrow range, referred to as the "belt of stability." For light isotopes of small atomic number the stable ratio is 1 1. For heavier isotopes the ratio gradually increases to about 1.5 1. Isotopes outside the band of stability are unstable and radioactive. There are no stable isotopes for elements of atomic number greater than 83 (Bi). [Pg.31]

Unstable isotopes decompose (decay) by a process referred to as radioactivity. Ordinarily the result is the transmutation of elements the atomic number of the product nucleus differs from that of the reactant. For example, radioactive decay of produces a stable isotope of nitrogen, N. The radiation given off (Figure 2.6) may be in the form of—... [Pg.31]

Activity, nuclear Rate of radioactive decay number of atoms decaying per unit time, 518... [Pg.681]

All of the isotopes of the element with atomic number 87 are radioactive. Hence, it is not found in nature. Yet, prior to its preparation by nuclear bombardment, chemists were confident they knew the chemical reactions this element would show. Explain. What predictions about this element would you make ... [Pg.106]

Consider a system of one kind of radioactive atoms in which on the average N atoms are observed to decompose in a given time, At, and N particles are emitted to be counted, the number of radioactive atoms remaining sensibly constant. When such counts are made, a series of values Nu N2, , Nn.i, Nn is obtained. The question now is... [Pg.270]

The numerator of the first term is the number of ways N white balls could appear in 6 draws, and the denominator N is the number of ways these same Ar white balls could be interchanged. (Division by N in the first term reflects the fact that the order in which any specific white ball is drawn is unimportant, since this division by Nl produces the effect of making individual white balls indistinguishable.) If the decomposition of radioactive atoms and the resultant emission of charged particles really follow the laws of chance that govern the drawing of balls from a bag, then radioactivity must be a random process. [Pg.271]


See other pages where Radioactivity atomic number is mentioned: [Pg.100]    [Pg.159]    [Pg.100]    [Pg.159]    [Pg.228]    [Pg.339]    [Pg.22]    [Pg.183]    [Pg.643]    [Pg.339]    [Pg.83]    [Pg.475]    [Pg.475]    [Pg.2]    [Pg.37]    [Pg.801]    [Pg.1251]    [Pg.693]    [Pg.415]    [Pg.145]    [Pg.356]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



Atomic number

Atomic numbering

Atoms number

Atoms radioactivity

Atoms: atomic number

© 2024 chempedia.info