Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical mechanisms alkyls

Organometallic compounds of less active metals and metalloids (e.g., silicon," antimony, and bismuth, are quite inert to water. Organomercury compounds (RHgX or R2Hg) can be reduced to RH by H2, NaBITj, or other reducing agents." The reduction with NaBH4 takes place by a free-radical mechanism." Alkyl-Si... [Pg.812]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

The reaction of perfluoroalkyl iodides with alkenes affords the perfluoro-alkylated alkyl iodides 931. Q.a-Difluoro-functionalized phosphonates are prepared by the addition of the iododifluoromethylphosphonate (932) at room temperature[778], A one-electron transfer-initiated radical mechanism has been proposed for the addition reaction. Addition to alkynes affords 1-perfluoro-alkyl-2-iodoalkenes (933)[779-781]. The fluorine-containing oxirane 934 is obtained by the reaction of allyl aicohol[782]. Under a CO atmosphere, the carbocarbonylation of the alkenol 935 and the alkynol 937 takes place with perfluoroalkyl iodides to give the fluorine-containing lactones 936 and 938[783]. [Pg.264]

A chain mechanism is proposed for this reaction. The first step is oxidation of a carboxylate ion coordinated to Pb(IV), with formation of alkyl radical, carbon dioxide, and Pb(III). The alkyl radical then abstracts halogen from a Pb(IV) complex, generating a Pb(IIl) species that decomposes to Pb(II) and an alkyl radical. This alkyl radical can continue the chain process. The step involving abstraction of halide from a complex with a change in metal-ion oxidation state is a ligand-transfer type reaction. [Pg.726]

Oxaziranes derived from isobutyraldehyde react with ferrous salts to give only substituted formamides fEq. (23)], The chain propagating radical 30 thus suffers fission with elimination of the isopropyl group. An H-transfer would lead to substituted butyramides, which are not found. Here is seen a parallel to the fragmentation of alkoxyl radicals, where the elimination of an alkyl group is also favored over hydrogen. The formulation of the oxazirane fission by a radical mechanism is thus supported. [Pg.99]

The radical mechanism is supported by a number of findings for instance, when the electrolysis is carried out in the presence of an olefin, the radicals add to the olefinic double bond styrene does polymerize under those conditions. Side products can be formed by further oxidation of the alkyl radical 2 to an intermediate carbenium ion 5, which then can react with water to yield an alcohol 6, or with an alcohol to yield an ether 7 ... [Pg.183]

Structurally simple alJkyl halides can sometimes be prepared by reaction of an alkane with Cl2 or Br2 through a radical chain-reaction pathway (Section 5.3). Although inert to most reagents, alkanes react readily with Cl2 or Br2 in the presence of light to give alkyl halide substitution products. The reaction occurs by the radical mechanism shown in Figure 10.1 for chlorination. [Pg.335]

The alkyl group R of certain carboxylic esters can be reduced to RH by treatment with lithium in ethylamine. The reaction is successful when R is a tertiary or a sterically hindered secondary alkyl group. A free-radical mechanism is likely. Similar reduction, also by a free-radical mechanism, has been reported with sodium in HMPA-r-BuOH. In the latter case, tertiary R groups give high yields of RH, but primary and secondary R are converted to a mixture of RH and ROH. Both of these methods provide an indirect method of accomplishing 10-81 for tertiary R. [Pg.529]

It is unlikely that a single mechanism suffices to cover all conversions of organometallic compounds to alkyl halides. In a number of cases the reaction has been shown to involve inversion of configuration (see p. 762), indicating an Se2 (back) mechanism, while in other cases retention of configuration has been shown, implicating an Se2 (front) or SeI mechanism. In still other cases, complete loss of configuration as well as other evidence have demonstrated the presence of a free-radical mechanism. ... [Pg.799]

Aromatic compounds can also be arylated by aryllead tricarboxylates. Best yields ( 70-85%) are obtained when the substrate contains alkyl groups an electrophilic mechanism is likely. Phenols are phenylated ortho to the OH group (and enols are a phenylated) by triphenylbismuth dichloride or by certain other Bi(V) reagents. O-Phenylation is a possible side reaction. As with the aryllead tricarboxylate reactions, a free-radical mechanism is unlikely. ... [Pg.932]

This was also accomplished with BaRu(0)2(OH)3. The same type of conversion, with lower yields (20-30%), has been achieved with the Gif system There are several variations. One consists of pyridine-acetic acid, with H2O2 as oxidizing agent and tris(picolinato)iron(III) as catalyst. Other Gif systems use O2 as oxidizing agent and zinc as a reductant. The selectivity of the Gif systems toward alkyl carbons is CH2 > CH > CH3, which is unusual, and shows that a simple free-radical mechanism (see p. 899) is not involved. ° Another reagent that can oxidize the CH2 of an alkane is methyl(trifluoromethyl)dioxirane, but this produces CH—OH more often than C=0 (see 14-4). ... [Pg.1533]

The corresponding reactions of transient Co(OEP)H with alkyl halides and epoxides in DMF has been proposed to proceed by an ionic rather than a radical mechanism, with loss of from Co(OEP)H to give [Co(TAP), and products arising from nucleophilic attack on the substrates. " " Overall, a general kinetic model for the reaction of cobalt porphyrins with alkenes under free radical conditions has been developed." Cobalt porphyrin hydride complexes are also important as intermediates in the cobalt porphyrin-catalyzed chain transfer polymerization of alkenes (see below). [Pg.289]

In the presence of propane (C3H8), the reaction mechanism is initiated by hydrogen abstraction from C3H8 by OH radicals, producing alkyl radicals, which then rapidly react with 02 to form peroxy radicals [88], The peroxy radicals react with NO and oxidize it to N02 ... [Pg.382]

In the photoaddition of 2-pyrrolidone the 5-alkyl isomer (69) always predominates, usually in a ratio of 2 1. The formation of anti-Markovnikov 1 1 adducts, telomers, and dehydrodimers of structure (71) supports a free radical mechanism. Similarly, formamide undergoes olefin addition under... [Pg.569]

Although the tin hydride reductions of alkyl halides seem simple, one must be careful because these reactions occur by a free radical mechanism. This is important, because the carbon radical produced in the reaction can isomerize68,78 and one often obtains two different stereoisomers from the synthesis. Another problem is that chiral centres can be lost in tin hydride reductions when an optically active halide is reduced. One example of this is the reduction of benzyl-6-isocyanopenicillanate with tributyltin deuteride78 (Scheme 14). The amount of isomerization depends on the temperature, the concentration of the tin hydride and the presence of and /-substituents78-82. However, some authors have reported tin hydride reductions where no racemization was observed78. [Pg.789]

We emphasize that the above mechanism is strictly valid only for H202 and alkyl hydroperoxide epoxidations of alkenes catalyzed by TS-1 and Ti-MCM-41. In view of the observation of similar titanium oxo species when H2 + 02 are brought in contact with TS-1 or Ti-MCM-41 (54), similar conclusions may be drawn for that system as well. A radical mechanism involving the Ti=0 groups had been proposed earlier by Khouw et al. (221) for the hydroxylation of alkanes. No spectroscopic investigation of the TS-l/H202/alkane has yet been reported. [Pg.162]

Note This reaction involves a polar acidic mechanism, not a free-radical mechanism It is a Friedel-Crafts alkylation, with the slight variation that the requisite carbocation is made by protonation of an alkene instead of ionization of an alkyl halide. Protonation of C4 gives a C3 carbocation. Addition to Cl and fragmentation gives the product. [Pg.125]

Scheme 10.10. Radical mechanism in alkylation reactions with alkyl halides. Scheme 10.10. Radical mechanism in alkylation reactions with alkyl halides.
Kinetic experiments have been performed on a copper-catalyzed substitution reaction of an alkyl halide, and the reaction rate was found to be first order in the copper salt, the halide, and the Grignard reagent [121]. This was not the case for a silver-catalyzed substitution reaction with a primary bromide, in which the reaction was found to be zero order in Grignard reagents [122]. A radical mechanism might be operative in the case of the silver-catalyzed reaction, whereas a nucleophilic substitution mechanism is suggested in the copper-catalyzed reaction [122]. The same behavior was also observed in the stoichiometric conjugate addition (Sect. 10.2.1) [30]. [Pg.330]


See other pages where Radical mechanisms alkyls is mentioned: [Pg.795]    [Pg.795]    [Pg.350]    [Pg.197]    [Pg.133]    [Pg.526]    [Pg.538]    [Pg.551]    [Pg.713]    [Pg.811]    [Pg.1032]    [Pg.282]    [Pg.324]    [Pg.869]    [Pg.288]    [Pg.321]    [Pg.57]    [Pg.306]    [Pg.41]    [Pg.317]    [Pg.126]    [Pg.335]    [Pg.242]    [Pg.152]    [Pg.55]    [Pg.192]    [Pg.650]    [Pg.57]    [Pg.205]    [Pg.210]    [Pg.214]    [Pg.245]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Alkyl radicals

Alkylation mechanism

Mechanisms alkylations

Radical alkylation

Radical mechanism

© 2024 chempedia.info