Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical ions reactive intermediates

The intriguing point is that the actual alkylation step may be the same at the anode and cathode, presumably by alkyl radicals which, in analogy to the Paneth reaction, alkylate the metal. The lifetime of the radical ion, reactivity of the radical ion or the radical towards the metal, stabilization of the radical by adsorption on the electrode surface, stabilization of each of the intermediates by solvation, their build-up in the double layer, the potential applied, all have an important contribution to the outcome. In certain cases the ET takes place catalytically, by a mediator or under the influence of surface effects17. It is therefore important to keep in mind the possible subtle differences between cases described below that otherwise appear similar. [Pg.669]

Besides spectroscopic methods, quenching processes have been utilized to differentiate between various types of radical ion pairs, too. These chemical methods make use of the different reactivities of CIP and SSIP which are caused by the unequal solvation and distance of the charged species in the ion pairs. Depending on the ambivalent character of radical ions, these intermediates may be scavenged either by electron transfer quenchers (Q) or by nucleophilic and electrophilic scavengers (Scheme 7 and Eqs. (5—7)). [Pg.234]

Cation (Section 1 2) Positively charged ion Cellobiose (Section 25 14) A disacchande in which two glu cose units are joined by a 3(1 4) linkage Cellobiose is oh tamed by the hydrolysis of cellulose Cellulose (Section 25 15) A polysaccharide in which thou sands of glucose units are joined by 3(1 4) linkages Center of symmetry (Section 7 3) A point in the center of a structure located so that a line drawn from it to any element of the structure when extended an equal distance in the op posite direction encounters an identical element Benzene for example has a center of symmetry Cham reaction (Section 4 17) Reaction mechanism m which a sequence of individual steps repeats itself many times usu ally because a reactive intermediate consumed m one step is regenerated m a subsequent step The halogenation of alkanes is a chain reaction proceeding via free radical intermediates... [Pg.1278]

Microwave or radio frequencies above 1 MHz that are appHed to a gas under low pressure produce high energy electrons, which can interact with organic substrates in the vapor and soHd state to produce a wide variety of reactive intermediate species cations, anions, excited states, radicals, and ion radicals. These intermediates can combine or react with other substrates to form cross-linked polymer surfaces and cross-linked coatings or films (22,23,29). [Pg.424]

Vinyhdene chloride polymeri2es by both ionic and free-radical reactions. Processes based on the latter are far more common (23). Vinyhdene chloride is of average reactivity when compared with other unsaturated monomers. The chlorine substituents stabih2e radicals in the intermediate state of an addition reaction. Because they are also strongly electron-withdrawing, they polari2e the double bond, making it susceptible to anionic attack. For the same reason, a carbonium ion intermediate is not favored. [Pg.428]

Reactive radical ions, cations and anions are frequent intermediates in organic electrode reactions and they can serve as polymerization initiators, e.g. for vinylic polymerization. The idea of electrochemically induced polymerization of monomers has been occasionally pursued and the principle has in fact been demonstrated for a number of polymers But it appears that apart from special cases with anionic initiation the heterogeneous initiation is unfavorable and thus not competitive for the production of bulk polymers A further adverse effect is the coating of electrodes... [Pg.56]

Such radicals or ion pairs are formed transiently as reactive intermediates in a very wide variety of organic reactions, as will be shown below. Reactions involving radicals tend to occur in the gas phase and in solution in non-polar solvents, and to be catalysed by light and by the addition of other radicals (p. 300). Reactions involving ionic intermediates take place more readily in solution in polar... [Pg.20]

Follow-up reactions of ion radicals as critical (reactive) intermediates 228... [Pg.193]

The wide diversity of the foregoing reactions with electron-poor acceptors (which include cationic and neutral electrophiles as well as strong and weak one-electron oxidants) points to enol silyl ethers as electron donors in general. Indeed, we will show how the electron-transfer paradigm can be applied to the various reactions of enol silyl ethers listed above in which the donor/acceptor pair leads to a variety of reactive intermediates including cation radicals, anion radicals, radicals, etc. that govern the product distribution. Moreover, the modulation of ion-pair (cation radical and anion radical) dynamics by solvent and added salt allows control of the competing pathways to achieve the desired selectivity (see below). [Pg.200]

Having shown that the enol silyl ethers are effective electron donors for the [D, A] complex formation with various electron acceptors, let us now examine the electron-transfer activation (thermal and photochemical) of the donor/ acceptor complexes of tetranitromethane and quinones with enol silyl ethers for nitration and oxidative addition, respectively, via ion radicals as critical reactive intermediates. [Pg.203]

Exploitation of time-resolved spectroscopy allows the direct observation of the reactive intermediates (i.e., ion-radical pair) involved in the oxidation of enol silyl ether (ESE) by photoactivated chloranil (3CA ), and their temporal evolution to the enone and adduct in the following way.41c Photoexcitation of chloranil (at lexc = 355 nm) produces excited chloranil triplet (3CA ) which is a powerful electron acceptor (EKelectron-rich enol silyl ethers (Em = 1.0-1.5 V versus SCE) to the ion-radical pair with unit quantum yield, both in dichloromethane and in acetonitrile (equation 20). [Pg.210]

Time-resolved spectroscopy establishes the formation of an ion-radical pair as the critical reactive intermediate (both from direct excitation of the CT absorption band at 532 nm and from specific excitation of chloranil at 355 nm, see Fig. 3) which undergoes ion-pair collapse to the biradical adduct followed by the ring closure to oxetane, as summarized in Scheme 11. [Pg.215]

Analogously, ion-radical pairs14 such as those in Scheme 18 are invoked as the critical reactive intermediates in the other donor/acceptor transformations depicted in Chart 4. [Pg.263]

Furthermore, kinetic analysis of the decay rate of anthracene cation radical, together with quantum yield measurements, establishes that the ion-radical pair in equation (76) is the critical reactive intermediate in osmylation reaction. Subsequent rapid ion-pair collapse then leads to the osmium adduct with a rate constant k 109 s 1 in competition with back electron-transfer, i.e.,... [Pg.273]

The identical stoichiometries and the color changes that are observed in thermal and photochemical aromatic osmylations point to the ion-radical pair Ar+, OsO T as the seminal intermediate in both activation processes. It is similarly possible that the osmylation of olefinic donors may proceed via the same types of reactive intermediates as delineated for the aromatic osmylation. [Pg.274]

The formation of the Wheland intermediate from the ion-radical pair as the critical reactive intermediate is common in both nitration and nitrosation processes. However, the contrasting reactivity trend in various nitrosation reactions with NO + (as well as the observation of substantial kinetic deuterium isotope effects) is ascribed to a rate-limiting deprotonation of the reversibly formed Wheland intermediate. In the case of aromatic nitration with NO, deprotonation is fast and occurs with no kinetic (deuterium) isotope effect. However, the nitrosoarenes (unlike their nitro counterparts) are excellent electron donors as judged by their low oxidation potentials as compared to parent arene.246 As a result, nitrosoarenes are also much better Bronsted bases249 than the corresponding nitro derivatives, and this marked distinction readily accounts for the large differentiation in the deprotonation rates of their respective conjugate acids (i.e., Wheland intermediates). [Pg.292]

Chain-reaction mechanisms differ according to the nature of the reactive intermediate in the propagation steps, such as free radicals, ions, or coordination compounds. These give rise to radical-addition polymerization, ionic-addition (cationic or anionic) polymerization, etc. In Example 7-4 below, we use a simple model for radical-addition polymerization. [Pg.166]

HO2, was considered as a reactive intermediate in both cases. The addition of radical scavengers strongly retarded the oxidation of the phosphinate ion confirming the radical type mechanism. It was also demonstrated that the reaction ceased when the catalyst was masked with EDTA. [Pg.448]

There is a large variety of polar and radical reactions, transition metal-catalyzed and pericyclic conversions, that have been carefully developed with regard to scope, selectivity, and yield. They are compiled in large compendia, for example, in [16-19], and in series, for example [20, 21], and are continuously improved and extended in timely research papers. This literature should be consulted in parallel with suggestions taken from electrosynthesis. Electrosynthesis is a clear alternative to chemical synthesis, when reactive intermediates (see Sect. 3.3) such as radical ions, radicals, carbanions, or carboca-tions are involved. The more advantageous are summarized in the following sections. [Pg.79]

Heterocycles are of great interest in organic chemistry due to their specific properties. Many of these cycles are widely present in natural and pharmaceutical compounds. Electrochemistry appears as a powerful tool for the preparation and the functionalization of various heterocycles because anodic oxidations and cathodic reductions allow the selective preparation of highly reactive intermediates (radicals, radical ions, cations, anions, and electrophilic and nucleophilic groups). In this way, the electrochemical technique can be used as a key step for the synthesis of complex molecules containing heterocycles. A review of the electrolysis of heterocyclic compounds is summarized in Ref. [1]. [Pg.341]


See other pages where Radical ions reactive intermediates is mentioned: [Pg.184]    [Pg.125]    [Pg.2]    [Pg.236]    [Pg.115]    [Pg.316]    [Pg.265]    [Pg.423]    [Pg.18]    [Pg.52]    [Pg.209]    [Pg.367]    [Pg.488]    [Pg.80]    [Pg.197]    [Pg.253]    [Pg.283]    [Pg.305]    [Pg.433]    [Pg.14]    [Pg.212]    [Pg.215]    [Pg.218]    [Pg.685]    [Pg.5]    [Pg.72]    [Pg.401]    [Pg.70]   
See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Intermediate reactivity

Intermediates, reactive

Organic radical ions reactive intermediates

Radical intermediates

Radical ion intermediates

Radical reactivity

Radicals reactive

Reactive intermediate generation radical ions

Reactive intermediates ions versus radicals

© 2024 chempedia.info