Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexation of acceptor

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

Here are only few coordination complexes which are characterized insufficiently. Complexes of acceptor polymers from nitrophthalic adds with donor polymers from arylaminodiethanols28,29 can serve as an example. [Pg.104]

Figure 14 (a) 2D colorimetric indicator array of CT complexes of acceptor molecules A-I with eight isomers of DHN (1-8),... [Pg.2328]

In light of tire tlieory presented above one can understand tliat tire rate of energy delivery to an acceptor site will be modified tlirough tire influence of nuclear motions on tire mutual orientations and distances between donors and acceptors. One aspect is tire fact tliat ultrafast excitation of tire donor pool can lead to collective motion in tire excited donor wavepacket on tire potential surface of tire excited electronic state. Anotlier type of collective nuclear motion, which can also contribute to such observations, relates to tire low-frequency vibrations of tire matrix stmcture in which tire chromophores are embedded, as for example a protein backbone. In tire latter case tire matrix vibration effectively causes a collective motion of tire chromophores togetlier, witliout direct involvement on tire wavepacket motions of individual cliromophores. For all such reasons, nuclear motions cannot in general be neglected. In tliis connection it is notable tliat observations in protein complexes of low-frequency modes in tlie... [Pg.3027]

Concerning my research during my Dow years, as I discuss iu Chapter 4, my search for cationic carbon intermediates started back in Hungary, while 1 was studying Friedel-Crafts-type reactions with acyl and subsequently alkyl fluorides catalyzed by boron trifluoride. In the course of these studies I observed (and, in some cases, isolated) intermediate complexes of either donor-acceptor or ionic nature. [Pg.72]

The dipole moment varies according to the solvent it is ca 5.14 x 10 ° Cm (ca 1.55 D) when pure and ca 6.0 x 10 ° Cm (ca 1.8 D) in a nonpolar solvent, such as benzene or cyclohexane (14,15). In solvents to which it can hydrogen bond, the dipole moment may be much higher. The dipole is directed toward the ring from a positive nitrogen atom, whereas the saturated nonaromatic analogue pyrroHdine [123-75-1] has a dipole moment of 5.24 X 10 ° C-m (1.57 D) and is oppositely directed. Pyrrole and its alkyl derivatives are TT-electron rich and form colored charge-transfer complexes with acceptor molecules, eg, iodine and tetracyanoethylene (16). [Pg.354]

In this mechanism, a complexation of the electrophile with the 7t-electron system of the aromatic ring is the first step. This species, called the 7t-complex, m or ms not be involved directly in the substitution mechanism. 7t-Complex formation is, in general, rapidly reversible, and in many cases the equilibrium constant is small. The 7t-complex is a donor-acceptor type complex, with the n electrons of the aromatic ring donating electron density to the electrophile. No position selectivity is associated with the 7t-complex. [Pg.553]

The charge-tranter concept of Mulliken was introduced to account for a type of molecular complex formation in which a new electronic absorption band, attributable to neither of the isolated interactants, is observed. The iodine (solute)— benzene (solvent) system studied by Benesi and Hildebrand shows such behavior. Let D represent an interactant capable of functioning as an electron donor and A an interactant that can serve as an electron acceptor. The ground state of the 1 1 complex of D and A is described by the wave function i [Pg.394]

The structure of the complex of (S)-tryptophan-derived oxazaborolidine 4 and methacrolein has been investigated in detail by use of H, B and NMR [6b. The proximity of the coordinated aldehyde and indole subunit in the complex is suggested by the appearance of a bright orange color at 210 K, caused by formation of a charge-transfer complex between the 7t-donor indole ring and the acceptor aldehyde. The intermediate is thought to be as shown in Fig. 1.2, in which the s-cis conformer is the reactive one. [Pg.9]

Phosphino-oxazoline)copper complex 28 was found by Helmchen et al. to be an excellent Diels-Alder catalyst [37] (Scheme 1.47, Table 1.20). The nitrogen atom acts as an electron-donating ligand, whereas phosphorus is a cr-donor-Tt-acceptor ligand. The copper complex of this phosphino-oxazoline ligand is therefore expected to have... [Pg.32]

Quite a number of asymmetric thiol conjugate addition reactions are known [84], but previous examples of enantioselective thiol conjugate additions were based on the activation of thiol nucleophiles by use of chiral base catalysts such as amino alcohols [85], the lithium thiolate complex of amino bisether [86], and a lanthanide tris(binaphthoxide) [87]. No examples have been reported for the enantioselective thiol conjugate additions through the activation of acceptors by the aid of chiral Lewis acid catalysts. We therefore focussed on the potential of J ,J -DBFOX/ Ph aqua complex catalysts as highly tolerant chiral Lewis acid catalyst in thiol conjugate addition reactions. [Pg.285]

The importance of the o-hydroxyl moiety of the 4-benzyl-shielding group of R,R-BOX/o-HOBn-Cu(OTf)2 complex was indicated when enantioselectivities were compared between the following two reactions. Thus, the enantioselectivity observed in the reaction of O-benzylhydroxylamine with l-crotonoyl-3-phenyl-2-imi-dazolidinone catalyzed by this catalyst was 85% ee, while that observed in a similar reaction catalyzed by J ,J -BOX/Bn.Cu(OTf)2 having no hydroxyl moiety was much lower (71% ee). In these reactions, the same mode of chirality was induced (Scheme 7.46). We believe the free hydroxyl groups can weakly coordinate to the copper(II) ion to hinder the free rotation of the benzyl-shielding substituent across the C(4)-CH2 bond. This conformational lock would either make the coordination of acceptor molecules to the metallic center of catalyst easy or increase the efficiency of chiral shielding of the coordinated acceptor molecules. [Pg.289]

Complexes of bulky substituted phenanthrolines [Pt(N-N)LX2] (L, X both monodentate N-N, e.g. 2,9-dimethyl- 1,10-phenanthroline) can be 5-coordinate tbp when a good 7r-acceptor (e.g. C2H4) is present or 4-coordinate with monodentate phenanthrolines. Hartree-Fock calculations indicate that the 7r-acceptors reduce the electron density at platinum so that the metal can accept charge from another donor. Species of this kind may be involved in alkene hydrogenation [138]. [Pg.236]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

Since the energy of the transfer band is determined by the difference between the donor ionization potential and the acceptor electron affinity, this fact points to the increase of the PCS ionization potential with decreasing conjugation efficiency. Therefore, the location of the transfer band of the molecular complexes of an acceptor and various PCSs can serve as a criterion for the conjugation efficiency in the latter. In Refs.267 - 272) the data for a number of molecular complexes are given, and the comparison with the electrical properties of the complexes is made. [Pg.32]

The analysis of ESR and electronic spectra shows that the molecular complexes of PCSs with acceptors represent the states both with partial (D6+. A8 )... [Pg.32]


See other pages where Complexation of acceptor is mentioned: [Pg.105]    [Pg.278]    [Pg.294]    [Pg.217]    [Pg.154]    [Pg.682]    [Pg.685]    [Pg.721]    [Pg.154]    [Pg.105]    [Pg.278]    [Pg.294]    [Pg.217]    [Pg.154]    [Pg.682]    [Pg.685]    [Pg.721]    [Pg.154]    [Pg.170]    [Pg.100]    [Pg.128]    [Pg.23]    [Pg.439]    [Pg.441]    [Pg.296]    [Pg.380]    [Pg.110]    [Pg.110]    [Pg.133]    [Pg.110]    [Pg.152]    [Pg.238]    [Pg.568]    [Pg.967]    [Pg.1129]    [Pg.176]    [Pg.119]    [Pg.49]    [Pg.6]   
See also in sourсe #XX -- [ Pg.593 ]




SEARCH



Acceptor Complexes of Diorganozinc Compounds

Donor-Acceptor Complexes of Carbazole-Containing Polymers

Donor-Acceptor Complexes of Main-Croup Elements

Donor-acceptor complexes of Ge, Sn and Pb

Electron Affinities of Charge Transfer Complex Acceptors

Formation of a donor-acceptor complex

Generation of Acceptor-Substituted Carbene Complexes

Quantum Mechanical Description of Donor-Acceptor Complexes

Some electron donor-acceptor complexes of dihalogens

Sulfoxide complexes acceptor ability of ligand

© 2024 chempedia.info