Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinones, Diels-Alder with

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

Structural subgoals may be useful in the application of transform-based strategies. This is especially so with structurally complex retrons which can be mapped onto a target in only one or two ways. It is often possible in such cases quickly to derive the structure of a possible intermediate in a trial retrosynthetic sequence. For instance, with 109 as TGT the quinone-Diels-Alder transform is an obvious T-goal. The retron for that transform can readily be mapped... [Pg.35]

Engler and colleagues256 demonstrated that the way in which catalyst 406 is prepared has a strong effect on the regioselectivity and enantioselectivity of quinone Diels-Alder reactions. The most effective catalyst was prepared from a 1 1 1 mixture of titanium tetrachloride, titanium tetraisopropoxide and chiral diol 416. The cycloadditions of 2-methoxy-l,4-benzoquinones such as 414 with simple dienes to give adducts like 415 proceeded with high yields and enantioselectivities of up to 80% ee using this catalytic system (equation 123). [Pg.425]

Nitrodienes undergo intermolecular Diels-Alder reactions with appropriate dienophiles. The resulting nitro compounds can then be cyclized via a nitrile oxide intermediate.49 Thus, the 2-chloroacrylonitrile Diels-Alder adduct of 8-nitro-l,3-octadiene was prepared and cyclized to give (105) as a 3 1 mixture of diastereomers (Scheme 30). The Diels-Alder adduct of dimethyl acetylenedicarboxylate and 8-nitro-l,3-octadiene cyclized exclusively at the conjugated double bond, activated by the ester groups. Similarly, the quinone Diels-Alder adduct (106) cyclized at the conjugated double bond reduction of the conjugated double bond permitted cyclization on the cycloalkenyl double bond. [Pg.1132]

The quinone Diels-Alder strategy gives rise to the proper stereochemistry at C(8) and C(14) and provides a e/s-fused BC ring system that ensures selective reduction of the C(7) carbonyl from the convex face of the molecule. Indeed, reduction of (301) with sodium borohydride in ethanol at 15 °C afforded (302). [Pg.481]

JOC6155>. Thiophene itself reacts in an inverse electron demand Diels-Alder with o-quinone monoimide to give products derived from intermediate (100) <93H(35)1I25>. [Pg.696]

Despite remarkable progress in catalytic asymmetric Diels-Alder reactions using various chiral Lewis acid catalysts [51], only a limited number of chiral catalysts effectively mediate quinone Diels-Alder reactions with moderate to good enantioselectivity [56]. Evans et al. reported that Sm(OTf)3- and Gd(OTf)3-PyBOX... [Pg.131]

The reduction of ,/S-unsaturated y-diketones can conveniently be done with zinc in acetic acid. The following procedure is applicable to the reduction of the Diels-Alder adduct of quinone and butadiene (Chapter 8, Section II). [Pg.29]

The use of ultrasonic (US) radiation (typical range 20 to 850 kHz) to accelerate Diels-Alder reactions is undergoing continuous expansion. There is a parallelism between the ultrasonic and high pressure-assisted reactions. Ultrasonic radiations induce cavitation, that is, the formation and the collapse of microbubbles inside the liquid phase which is accompanied by the local generation of high temperature and high pressure [29]. Snyder and coworkers [30] published the first ultrasound-assisted Diels-Alder reactions that involved the cycloadditions of o-quinone 37 with appropriate dienes 38 to synthesize abietanoid diterpenes A-C (Scheme 4.7) isolated from the traditional Chinese medicine, Dan Shen, prepared from the roots of Salvia miltiorrhiza Bunge. [Pg.154]

The photo-induced exo selectivity was observed in other classic Diels-Alder reactions. Data relating to some exo adducts obtained by reacting cyclopentadiene or cyclohexadiene with 2-methyl-1,4-benzoquinone, 5-hydroxynaphtho-quinone, 4-cyclopentene-l,3-dione and maleic anhydride are given in Scheme 4.13. The presence and amount of EtsN plays a decisive role in reversing the endo selectivity. The possibility that the prevalence of exo adduct is due to isomerization of endo adduct under photolytic conditions was rejected by control experiments, at least for less reactive dienophiles. [Pg.164]

The cycloadditions of cyclopentadiene 1 and its spiro-derivatives 109 and 110 with quinones 52, 111 and 112 (Scheme 4.20), carried out in water at 30 °C in the presence of 0.5% mol. of cetyltrimethylammonium bromide (CTAB), gave the endo adduct in about 3 h with good yield [72b]. With respect to the thermal Diels-Alder reaction, the great reaction rate enhancement in micellar medium (Scheme 4.20) can be ascribed to the increased concentration of the reactants in the micellar pseudophase where they are also more ordered. [Pg.176]

An interesting combination of enzymatic with non-enzymatic transformation in a one-pot three-step multiple sequence was reported by Waldmann and coworkers [82]. Phenols 125 in the presence of oxygen and enzyme tyrosinase are hydroxylated to catechols 126 which are then oxidized in situ to ortho quinones 127. These intermediates subsequently undergo a Diels-Alder reaction with inverse electron demand by reaction with different dienophiles (Table 4.19) to give endo bicyclic 1,2-diketones 128 and 129 in good yields. [Pg.182]

Enantiomers (M)- and (P)-helicenebisquinones [32] 93 have been synthesized by high pressure Diels-Alder reaction of homochiral (+)-(2-p-tolylsulfo-nyl)-l,4-benzoquinone (94) in excess with dienes 95 and 96 prepared from the common precursor 97 (Scheme 5.9). The approach is based on the tandem [4 + 2] cycloaddition/pyrolitic sulfoxide elimination as a general one-pot strategy to enantiomerically enriched polycyclic dihydroquinones. Whereas the formation of (M)-helicene is explained by the endo approach of the arylethene toward the less encumbered face of the quinone, the formation of its enantiomeric (P)-form can be the result of an unfavourable interaction between the OMe group of approaching arylethene and the sulfinyl oxygen of 94. [Pg.219]

Azulene quinones [49b] are compounds related to the family of tropones and are considered to possess great biological and physiological potential. Several polycyclic compounds have been prepared by high pressure (3kbar, PhCl, 130°C, 15h) Diels-Alder reaction of 3-bromo-l,5-azulene quinone (137) and 3-bromo-l,7-azulene quinone (138) with several dienophiles. The cycloadditions were regioselective and afforded cycloadducts in reasonable to good yields (Scheme 5.20). [Pg.229]

Mataka and coworkers reported the studies of the Diels-Alder reactions of [3.3] orthoanthracenophanes 96 and 97, of which anthraceno unit, the potential diene, has two nonequivalent faces, inside and outside. The reactions of 96 with dien-ophiles gave the mixtures of inside and outside adducts with the ratios between 1 1 and 1 1.5. However, the ratio changes drastically, in favor of the inside adducts, when 97 reacts with dienophiles such as maleic anhydride, maleimide and naphto-quinone [55] (Scheme 46). Mataka suggested that the Jt-facial selectivity is controlled by an orbital interaction between the electron-poor dienophiles and the Jt-orbital of the facing aromatics, which would lead to a stabilization of the transition state, while Nishio suggested that the selectivity is due to the attractive k/k or CH/jt interaction [53]. [Pg.211]

Release and Reactivity of tf-o-QMs Although the r 2-o-QM Os complexes 11 are stable when exposed to air or dissolved in water, the quinone methide moiety can be released upon oxidation (Scheme 3.8).16 For example, reaction of the Os-based o-QM 12 with 1.5 equivalents of CAN (ceric ammonium nitrate) in the presence of an excess of 3,4-dihydropyran led to elimination of free o-QM and its immediate trapping as the Diels-Alder product tetrahydropyranochromene, 14. Notably, in the absence of the oxidizing agent, complex 12 is completely unreactive with both electron-rich (dihydropyran) and electron-deficient (A-methylmaleimide) dienes. [Pg.73]

The last reaction commonly evoked to support the involvement of radical species 10 in tocopherol chemistry is the disproportionation of two molecules into the phenol a-tocopherol and the ort/zo-quinone methide 3 (Fig. 6.8), the latter immediately dimerizing into spiro dimer 9. This dimerization is actually a hetero-Diels-Alder process with inverse electron demand. It is largely favored, which is also reflected by the fact that spiro dimer 9 is an almost ubiquitous product and byproduct in vitamin E chemistry.28,29 The disproportionation mechanism was proposed to account for the fact that in reactions of tocopheroxyl radical 2 generated without chemical coreactants, that is, by irradiation, the spiro dimer 9 was the only major product found. [Pg.172]

Inubushi s synthesis of racemic serratinine commences with a Diels-Alder reaction of butadiene with substituted quinone derivative 26 (available in four steps from 25,... [Pg.136]

Ethoxy)-allylidenecyclopropane (136a) readily underwent Diels-Alder reaction with activated dienophiles under mild conditions (Table 14) [33]. Only one regioisomer was formed with unsymmetrically substituted dienophiles such as methyl maleic anhydride (137), and quinones 138-141 (entries 2 and 3-6). AH the cycloadducts 143-147 derive from an endo approach between the two reagents. Two site-isomers were obtained in 96 4 ratio with 3-isopropyl-6-methyl-p-quinone (141) (entry 6) and the high site-selectivity observed in this... [Pg.29]

Condensed benzo[i>]furan molecules can be prepared by inter- or intra-molecular Diels-Alder reactions from furo[3,4-b]benzofurans, and some interesting intermolecular examples are listed below. As can be seen, the furo[3,4-i>]benzofuran 60 underegoes Diels-Alder reactions with naphtho-l,4-quinone in the presence of Znl2 as a Lewis acid to form the aromatized cycloadduct. When the diene precursor reacts with benzo-l,4-quinone in the absence of Znl2, the product is obtained as an endo-exo mixture <00JCS(P1)1387>. [Pg.141]


See other pages where Quinones, Diels-Alder with is mentioned: [Pg.22]    [Pg.85]    [Pg.32]    [Pg.94]    [Pg.23]    [Pg.85]    [Pg.373]    [Pg.1151]    [Pg.81]    [Pg.845]    [Pg.132]    [Pg.254]    [Pg.56]    [Pg.102]    [Pg.352]    [Pg.56]    [Pg.155]    [Pg.211]    [Pg.1152]    [Pg.475]    [Pg.190]    [Pg.276]    [Pg.531]    [Pg.76]    [Pg.166]    [Pg.148]   
See also in sourсe #XX -- [ Pg.90 , Pg.101 , Pg.103 , Pg.116 , Pg.117 ]




SEARCH



Diels quinone

© 2024 chempedia.info