Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinone methides stable

The absence of methylol (-CH2OH) groups in all six lower molecular weight resorcinol-formaldehyde condensates which have been isolated [119] reflects the high reactivity of resorcinol under acid or alkaline conditions. It also shows the instability of its para-hydroxybenzyl alcohol groups and their rapid conversion to jpara-hydroxybenzyl carbonium ions or quinone methides. This explains how identical condensation products are obtained under acid or alkaline reaction conditions [119]. In acid reaction conditions methylene ether-linked condensates are also formed, but they are highly unstable and decompose to form stable methylene links in 0.25 to 1 h at ambient temperature [121,122]. [Pg.1061]

These DFT data provide a consistent picture for the tautomerization equilibria involving the dimers 2-4, which highlight the extended quinone methides 2a, 3a, and 4a as the most stable tautomers for all biindolyl quinones investigated. [Pg.51]

To account for the effects of specific acid catalysis, the calculations were also carried out in the presence of an additional proton. The resulting potential energy surface at PCM-B 3LYP/6-311 G(2df,p)//B 3LYP/6-31 G(d, p) level of theory suggested that the p-O-4-linked quinone methide ((3-O-QM) is a fairly stable species and its... [Pg.62]

Amouri, H. Besace, Y. Bras, J. L. Vaissermann, J. General synthesis, first crystal structure, and reactivity of stable o-quinone methide complexes of Cp Ir. J. Am. Chem. Soc. 1998, 120, 6171-6172. [Pg.66]

Release and Reactivity of tf-o-QMs Although the r 2-o-QM Os complexes 11 are stable when exposed to air or dissolved in water, the quinone methide moiety can be released upon oxidation (Scheme 3.8).16 For example, reaction of the Os-based o-QM 12 with 1.5 equivalents of CAN (ceric ammonium nitrate) in the presence of an excess of 3,4-dihydropyran led to elimination of free o-QM and its immediate trapping as the Diels-Alder product tetrahydropyranochromene, 14. Notably, in the absence of the oxidizing agent, complex 12 is completely unreactive with both electron-rich (dihydropyran) and electron-deficient (A-methylmaleimide) dienes. [Pg.73]

An alternative route for stabilization of quinone methides by metal coordination involves deprotonation of a ri5-coordinated oxo-dienyl ligand. This approach was introduced by Amouri and coworkers, who showed that treatment of the [Cp Ir(oxo-ri5-dienyl)]+ B1, 22 with a base (i-BuOK was the most effective) resulted in formation of stable Cp Ir(r 4-o-QM) complexes 23 (Scheme 3.14).25 Using the same approach, a series of r 4-o-QM complexes of rhodium was prepared (Scheme 3.14)26 Structural data of these complexes and a comparison of their reactivity indicated that the o-QM ligand is more stabilized by iridium than by rhodium. [Pg.77]

In a similar approach, double deprotonation of r 6-coordinated ortho- and para-cresols, 30 and 31, with t-BuOK led to formation of stable r 4-coordinated p- and o-quinone methide complexes of manganese, 32 and 33 (Scheme 3.19).37... [Pg.79]

Given their extraordinary reactivity, one might assume that o-QMs offer plentiful applications as electrophiles in synthetic chemistry. However, unlike their more stable /tora-quinone methide (p-QM) cousin, the potential of o-QMs remains largely untapped. The reason resides with the propensity of these species to participate in undesired addition of the closest available nucleophile, which can be solvent or the o-QM itself. Methods for o-QM generation have therefore required a combination of low concentrations and high temperatures to mitigate and reverse undesired pathways and enable the redistribution into thermodynamically preferred and desired products. Hence, the principal uses for o-QMs have been as electrophilic heterodienes either in intramolecular cycloaddition reactions with nucleophilic alkenes under thermodynamic control or in intermolecular reactions under thermodynamic control where a large excess of a reactive nucleophile thwarts unwanted side reactions by its sheer vast presence. [Pg.90]

It was shown that complexes 19 of the zwitterionic precursors of ortho-quinone methides and a bis(sulfonium ylide) derived from 2,5-di hydroxyl 1,4 benzoquinone46 were even more stable than those with amine N-oxides. The bis(sulfonium ylide) complexes were formed in a strict 2 1 ratio (o-QM/ylide) and were unaltered at —78 °C for 10 h and stable at room temperature under inert conditions for as long as 15—30 min (Fig. 6.18).47 The o-QM precursor was produced from a-tocopherol (1), its truncated model compound (la), or a respective ortho-methylphenol in general by Ag20 oxidation in a solution containing 0.50-0.55 equivalents of bis(sulfonium ylide) at —78 °C. Although the species interacting with the ylide was actually the zwitterionic oxidation intermediate 3a and not the o-QM itself, the term stabilized o-QM was introduced for the complexes, since these reacted similar to the o-QMs themselves but in a well defined way without dimerization reactions. [Pg.181]

To assess the trapping of biological nucleophiles, the pyrido[l,2-a]indole cyclopropyl quinone methide was generated in the presence of 5 -dGMP. The reaction afforded a mixture of phosphate adducts that could not be separated by reverse-phase chromatography (Fig. 7.16). The 13C-NMR spectrum of the purified mixture shown in Fig. 7.16 reveals that the pyrido [1,2-a] indole was the major product with trace amounts of azepino[l,2-a] indole present. Since the stereoelec-tronic effect favors either product, steric effects must dictate nucleophilic attack at the least hindered cyclopropane carbon to afford the pyrido[l,2-a]indole product. Both adducts were stable with elimination and aromatization not observed. In fact, the pyrido [1,2-a] indole precursor (structure shown in Scheme 7.14) to the pyrido [l,2-a]indole cyclopropyl quinone methide possesses cytotoxic and cytostatic properties not observed with the pyrrolo [1,2-a] indole precursor.47... [Pg.243]

SCHEME 7.21 Synthesis of a stable quinone methide using rhodium (II) acetate in methanol.84,93 The 13C label is designated with an asterisk ( ). [Pg.255]

Scheme 7.25 shows the role of quinone methide energy on the cation-quinone methide equilibrium. A high pKa value for this equilibrium is expected if the energy of the quinone methide approaches that of the carbocation. To construct this cycle, we used the Ka values that we determined for the protonated ketone (pKa — —0.9) and quinone methide (pKa = 6.6). This pKa difference requires that the keto form be more stable than the quinone methide by — 10.2kcal/mol. We obtained the calculated energy difference of lO.lkcal/mol from Hartree-Fock calculations using 6-31G and STO-3G basis sets, inset of Scheme 7.25. [Pg.258]

Table 7.3 shows the concentrations of 1-5 that result in 50% growth inhibition (GI50) of five human cancer cell lines. Inspection of these data reveals that cytostatic activity of 1 and 3-5 depends on the thermodynamic favorability of the quinone methide species compared to the corresponding keto form. The most cytostatic prekinamycins 1 and 5 are associated with the thermodynamically stable quinone methides. In contrast, the inactive prekinamycins 3 and 4 are associated with thermodynamically stable keto tautomers. The exception is prekinamycin 2, which is cytostatic and possesses a relatively stable keto tautomer 3 compared to its quinone methide. Although the AE value for quinone methide tautomerization can predict cytostatic properties, prekinamycin 2 shows that there must be other factors determining biological activity. [Pg.260]

Fan, P. W. Zhang, F. Bolton, J. L. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Chem. Res. Toxicol. 2000, 13, 45-52. [Pg.354]

However, there are two problems with these unconjugated lactones lack of selectivity and limited stability of the inhibitor in biological buffers. Coumarin carboxylates have been developed to improve selectivity toward a given serine protease (Section 11.4.1). On the other hand, the amide bond is chemically and enzymatically much more stable than the ester one. This raised the question of whether a starting functionalized lactam behaved like the previous lactones and generated in situ a quinonimine methide, the aza-analogue of the quinone methide (Section 11.5). [Pg.364]


See other pages where Quinone methides stable is mentioned: [Pg.900]    [Pg.1074]    [Pg.395]    [Pg.403]    [Pg.24]    [Pg.50]    [Pg.63]    [Pg.70]    [Pg.71]    [Pg.75]    [Pg.83]    [Pg.86]    [Pg.207]    [Pg.207]    [Pg.209]    [Pg.220]    [Pg.220]    [Pg.240]    [Pg.250]    [Pg.254]    [Pg.257]    [Pg.259]    [Pg.260]    [Pg.261]    [Pg.389]    [Pg.392]    [Pg.393]    [Pg.395]    [Pg.395]    [Pg.398]    [Pg.406]    [Pg.451]    [Pg.45]    [Pg.545]    [Pg.339]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Methidate

Methide

Quinone methides

© 2024 chempedia.info