Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum chemical calculations structural effects

As a multidimensional PES for the reaction from quantum chemical calculations is not available at present, one does not know the reason for the surprismg barrier effect in excited tran.s-stilbene. One could suspect diat tran.s-stilbene possesses already a significant amount of zwitterionic character in the confomiation at the barrier top, implying a fairly Tate barrier along the reaction path towards the twisted perpendicular structure. On the other hand, it could also be possible that die effective barrier changes with viscosity as a result of a multidimensional barrier crossing process along a curved reaction path. [Pg.857]

Many computational studies in heterocyclic chemistry deal with proton transfer reactions between different tautomeric structures. Activation energies of these reactions obtained from quantum chemical calculations need further corrections, since tunneling effects may lower the effective barriers considerably. These effects can either be estimated by simple models or computed more precisely via the determination of the transmission coefficients within the framework of variational transition state calculations [92CPC235, 93JA2408]. [Pg.7]

Kennedy and co-workers 2 117) used the changing effect of the initiation ability of the Lewis acids according to Eq. (17) and the termination tendency of the anion formed according to Eq. (18) in order to obtain telechelic polymers , block copolymers and graft copolymers in a controlled manner. Quantum chemical calculations provide the possibility to discuss structural influences which work on the equilibrium Eq. (19) and therefore on the stability of the two adjacent ions. [Pg.207]

The growing importance of quantum-chemical calculations is dealt with in a short section, with emphasis on the consideration of relativistic effects, especially in systems containing mercury. These calculations aim at optimization of structures, determination of bond energies, simulation of spectra, and estimation of spectral parameters, independent of but complementary to experiments. [Pg.1254]

It should be kept in mind that quantum chemical calculations of structures and magnetic properties generally are done for the isolated carbocation without taking into account its environment and media effects such as solvent, site-specific solvation or counterion effects. This is a critical question since NMR spectra of carbocations with a few exceptions are studied in superacid solutions and properties calculated for the gas-phase species are of little relevance if the electronic structure of carbocations is strongly perturbed by solvent effects. Provided that appropriate methods are used,... [Pg.159]

The existence of critical solvation numbers for a given process to happen is an important concept. Quantum chemical calculations using ancillary solvent molecules usually produce drastic changes on the electronic nature of saddle points of index one (SPi-1) when comparisons are made with those that have been determined in absence of such solvent molecules. Such results can not be used to show the lack of invariance of a given quantum transition structure without further ado. Solvent cluster calculations must be carefully matched with experimental information on such species, they cannot be used to represent solvation effects in condensed phases. [Pg.330]

Tapia, O. and Lluch, J. M. Solvent effects on chemical reaction profiles. Monte Carlo simulation of hydration effects on quantum chemically calculated stationary structures, J. Chem.Phys., 83 (1983, 3970-3982... [Pg.356]

An emerging subdiscipline of tribological simulation involves the study of tribochemical reactions—that is, reactions that are activated by pressure and shear. These reactions alter the structure of lubricants and films that are used to protect surfaces from wear. Understanding the effects of these reactions on the intended behavior of these films is of utmost importance. However, simulation studies of tribochemical reactions have been impeded by the difficulty in accurately describing changes in chemical bonding. In a limited number of cases, this can be achieved with the use of reactive FFs, as noted above, whereas in other cases, one must resort to expensive quantum chemical calculations. In this section, we will describe two studies where such methods were used to examine tribochemical reactions. [Pg.117]

The isopyridine 179 (3<52-lH-pyridine) is the result if the oxygen atom of 180 is replaced by an NH group. Owing to the better electron-donor quality relative to that of an oxygen atom, the NH group could have the effect that the zwitterion 179-Zj is more stable than the allene structure 179, even in the gas phase. Experiments and quantum-chemical calculations support this expectation. [Pg.295]

Quantum chemical calculations need not be limited to the description of the structures and properties of stable molecules, that is, molecules which can actually be observed and characterized experimentally. They may as easily be applied to molecules which are highly reactive ( reactive intermediates ) and, even more interesting, to molecules which are not minima on the overall potential energy surface, but rather correspond to species which connect energy minima ( transition states or transition structures ). In the latter case, there are (and there can be) no experimental structure data. Transition states do not exist in the sense that they can be observed let alone characterized. However, the energies of transition states, relative to energies of reactants, may be inferred from experimental reaction rates, and qualitative information about transition-state geometries may be inferred from such quantities as activation entropies and activation volumes as well as kinetic isotope effects. [Pg.293]


See other pages where Quantum chemical calculations structural effects is mentioned: [Pg.1279]    [Pg.2144]    [Pg.73]    [Pg.92]    [Pg.385]    [Pg.404]    [Pg.195]    [Pg.515]    [Pg.87]    [Pg.253]    [Pg.1151]    [Pg.1284]    [Pg.352]    [Pg.7]    [Pg.160]    [Pg.328]    [Pg.148]    [Pg.35]    [Pg.388]    [Pg.260]    [Pg.160]    [Pg.330]    [Pg.331]    [Pg.256]    [Pg.254]    [Pg.310]    [Pg.320]    [Pg.12]    [Pg.172]    [Pg.322]    [Pg.269]    [Pg.269]    [Pg.1138]    [Pg.688]    [Pg.688]    [Pg.100]    [Pg.147]    [Pg.1138]    [Pg.481]    [Pg.104]    [Pg.196]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Calculation quantum chemical calculations

Chemical structure effects

Quantum calculations

Quantum chemical

Quantum chemical calculation

Quantum chemical calculations effects

Quantum effective

Quantum effects

Quantum effects calculation

Quantum structure

Structure calculations

© 2024 chempedia.info