Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative measurements performance

In addition to the quantitative measurements performed by an inspector, in some cases a quahtative measurement (attribute testing) is sufficient, e.g., simply confirming the presence of a representative isotope based on a typical gamma ray. [Pg.2906]

Analytical chemistry is often described as the area of chemistry responsible for characterizing the composition of matter, both qualitatively (what is present) and quantitatively (how much is present). This description is misleading. After all, almost all chemists routinely make qualitative or quantitative measurements. The argument has been made that analytical chemistry is not a separate branch of chemistry, but simply the application of chemical knowledge. In fact, you probably have performed quantitative and qualitative analyses in other chemistry courses. For example, many introductory courses in chemistry include qualitative schemes for identifying inorganic ions and quantitative analyses involving titrations. [Pg.2]

We will discuss below the reeent experimental observations relative to the eleetrieal resistivity and magnetoresistance of individual and bundles of MWCNTs. It is interesting to note however that the ideal transport experiment, i.e., a measurement on a well eharacterised SWCNT at the atomic scale, though this is nowadays within reaeh. Nonetheless, with time the measurements performed tended gradually eloser to these ideal eonditions. Indeed, in order to interpret quantitatively the eleetronie properties of CNTs, one must eombine theoretieal studies with the synthesis of well defined samples, which structural parameters have been precisely determined, and direet electrical measurements on the same sample. [Pg.114]

Engines are used to do work, and a quantitative measure of the performance of an engine is efficiency ... [Pg.283]

Motor Octane Number (MON) is a quantitative measure of a fuel to knocking, simulating the fuel s performance under severe operating condition.s (at 900 rpm and at 300°F). [Pg.360]

A more detailed investigation of the thermal behavior of the exploding [ ]rotanes by differential scanning calorimetry (DSC) measurements performed in aluminum crucibles with a perforated lid under an argon atmosphere revealed that slow decomposition of exp-[5]rotane 165 has already started at 90 °C and an explosive quantitative decomposition sets on at 150 °C with a release of energy to the extent of AH(jecomp = 208 kcal/mol. Exp-[6]rotane 166 decomposes from 100°C upwards with a maximum rate at 154°C and an energy release of AH(jg on,p=478 kcal/mol. The difference between the onset (115°C) and the maximum-rate decomposition temperature (125-136°C) in the case of exp-[8]rotane 168 is less pronounced, and AHjecomp 358 kcal/mol. The methy-... [Pg.36]

The first-principles calculation of NIS spectra has several important aspects. First of all, they greatly assist the assignment of NIS spectra. Secondly, the elucidation of the vibrational frequencies and normal mode compositions by means of quantum chemical calculations allows for the interpretation of the observed NIS patterns in terms of geometric and electronic structure and consequently provide a means of critically testing proposals for species of unknown structure. The first-principles calculation also provides an unambiguous way to perform consistent quantitative parameterization of experimental NIS data. Finally, there is another methodological aspect concerning the accuracy of the quantum chemically calculated force fields. Such calculations typically use only the experimental frequencies as reference values. However, apart from the frequencies, NIS probes the shapes of the normal modes for which the iron composition factors are a direct quantitative measure. Thus, by comparison with experimental data, one can assess the quality of the calculated normal mode compositions. [Pg.187]

Quantitation is performed by the calibration technique. A new calibration curve with anilide standard solutions is constructed for each set of analyses. The peak area or peak height is plotted against the injected amount of anilide. The injection volume (2 pL) should be kept constant as the peak area or peak height varies with the injection volume. Before each set of measurements, the GC or HPLC system should be calibrated by injection of standard solutions containing about 0.05-2 ng of anilide. Recommendation after constructing the calibration curve in advance, standard solutions and sample solutions are injected alternately for measurement of actual samples. [Pg.332]

Quantitation is performed by the calibration technique. Prepare a calibration curve by injecting pyrithiobac-methyl standard solutions, equivalent to 0.2,0.5,1.0,2.0,3.0 and 4.0 ng, into the gas chromatograph. Measure the heights of the peaks obtained. Plot the peak heights in millimeters against the injected amounts of pyrithiobac-methyl in nanograms. [Pg.562]

The ITIES with an adsorbed monolayer of surfactant has been studied as a model system of the interface between microphases in a bicontinuous microemulsion [39]. This latter system has important applications in electrochemical synthesis and catalysis [88-92]. Quantitative measurements of the kinetics of electrochemical processes in microemulsions are difficult to perform directly, due to uncertainties in the area over which the organic and aqueous reactants contact. The SECM feedback mode allowed the rate of catalytic reduction of tra 5-l,2-dibromocyclohexane in benzonitrile by the Co(I) form of vitamin B12, generated electrochemically in an aqueous phase to be measured as a function of interfacial potential drop and adsorbed surfactants [39]. It was found that the reaction at the ITIES could not be interpreted as a simple second-order process. In the absence of surfactant at the ITIES the overall rate of the interfacial reaction was virtually independent of the potential drop across the interface and a similar rate constant was obtained when a cationic surfactant (didodecyldimethylammonium bromide) was adsorbed at the ITIES. In contrast a threefold decrease in the rate constant was observed when an anionic surfactant (dihexadecyl phosphate) was used. [Pg.321]

Once we have estimated the unknown parameters that appear in an algebraic or ODE model, it is quite important to perform a few additional calculations to establish estimates of the standard error in the parameters and in the expected response variables. These additional computational steps are very valuable as they provide us with a quantitative measure of the quality of the overall fit and inform us how trustworthy the parameter estimates are. [Pg.177]

The greatest need in model performance testing and validation is clearly the use of quantitative measures to describe comparisons of observed and predicted values. As noted above, although a rigorous statistical theory for model performance assessments has yet to be developed, a variety of statistical measures has been used in various combinations and the frequency of use has been increasing in recent years. The FAT workshop (3.) identified three general types of comparisons that are often made in model performance testing ... [Pg.168]

The use of statistical tests to characterize model performance has increased markedly within the last few years as demonstrated by the references cited above many other examples are in the literature. The current time is appropriate for integration of existing techniques into a unified framework of guidelines, procedures and quantitative measures for model testing and validation. [Pg.169]

Sequential investigations may be used for both attribute testing and quantitative measurements (variable testing). The fact that it is enough to perform only as many tests or measurements as are absolutely necessary, is of great advantage in such cases if individual samples are either difficult to obtain or expensive, or if the same is true for the measurement. [Pg.119]

Figure 8.2 Design of protein-embedding barcode is depicted in (a) five thin layers of matrix (the thicker lines) coated with variable concentration of tested protein (thinner lines located above the matrix), (b) A FFPE tissue section of bladder cancer IHC-stained by monoclonal antibody to E-cadherine showing variable intensity of positive staining results which is compared with a protein-embedding bar code as designed in this chapter. Using computer-assisted image analysis with a special software, an automatic quantitative measurement of protein is performed. See color insert. Figure 8.2 Design of protein-embedding barcode is depicted in (a) five thin layers of matrix (the thicker lines) coated with variable concentration of tested protein (thinner lines located above the matrix), (b) A FFPE tissue section of bladder cancer IHC-stained by monoclonal antibody to E-cadherine showing variable intensity of positive staining results which is compared with a protein-embedding bar code as designed in this chapter. Using computer-assisted image analysis with a special software, an automatic quantitative measurement of protein is performed. See color insert.

See other pages where Quantitative measurements performance is mentioned: [Pg.818]    [Pg.554]    [Pg.291]    [Pg.818]    [Pg.554]    [Pg.291]    [Pg.496]    [Pg.791]    [Pg.141]    [Pg.36]    [Pg.127]    [Pg.230]    [Pg.254]    [Pg.4]    [Pg.312]    [Pg.473]    [Pg.524]    [Pg.597]    [Pg.1196]    [Pg.1225]    [Pg.1231]    [Pg.38]    [Pg.194]    [Pg.213]    [Pg.167]    [Pg.159]    [Pg.160]    [Pg.347]    [Pg.430]    [Pg.34]    [Pg.139]    [Pg.311]    [Pg.576]    [Pg.605]    [Pg.377]   


SEARCH



High performance liquid chromatography quantitative measurements

Measures performance

Performance measurement

Performance measures measurement

Performance, measuring

Performing measurements

Quantitation measurements

Quantitative measure

Quantitative measurements

Safety performance measurement Quantitative

© 2024 chempedia.info